
AD-AI02 493 PRC DATA SERVICES CO RESTON VAFG9/
CALCOMP PREVIEW SYSTEM. PROGRAM MAINTENANCE MANUAL.(U) F/92

APR Al DCAlOO7-77-C-0037

UNCLASSIFIED flCA/flF-Al/nn:,Aflflfflflfflflfflflf
smEohEohhEEoh
EohEEmhhhhhhEE
mEEEEEEEEmhEEE
mohEEmhEEEEEEE
EhmhEEmhmhhEEE

502fl 101- ,-I

R.cPORT DOCUMENTATION R' ~ - .3. Rtecipiana Accsslon No.

,-.- PAGE = ~DCA/DP-i1p92a t Az3 '-
it btitle Re" 410

: Apr 8l (date of issui)
CALCOMP PREVIEW SYSTEMI, Program M'aintenance Mianual

L,~an a.,-, -i to

9. Performing Orgsnusl- .3.a.' .'t 0. ProiectiTask/Work Unit No.

Planning Research Corporation Subtask 80-3.1
Data Services Company 3&11fnrectC) or GranjCW No.

11301 Sunset Hills Drive c'DC'1,07-03,
Reston, VA 22090

2. Sonoring Organization Name and Addrees 13/yeofRpr Peio '~ C l~ - 7 C03

Defense Communilcation gineer-4q -.CereL--;,
1860 Wiehie Avenue Fina
Reston, VA 22090 1 4. j.

15. Supplenientary Notes'...--

M6 Abstract (Limit 2W0 words)

The CALCOMP Preview System enables a user to evaluate the contents of a CALCOMIP generated

plot file by displaying a similar image on the Tektronix 4014 graphic display terminal.

DA102 4 9 3

I&oumn Analysis a. Deeceiptors

C)

LL Idontiflers/Open-Inded Terms,

COSATI Field/Group

IS Aaiael11SatmnLI Securitty Class (This Report) 21. No. of Pages

Unclassi fied
Relas Ulii3 .WSecuri1ty Clase (This Page) 22. Price

1l11cl 'S;i f i ed
550 ANSI-US9. Ili) See instructions On Reverse OPTIONAL FORM '12 (4-7M

X, (Formerly NTIS-35)

- Control No. 80-3.1-Z

PROGRAM MALNTMNCE H&UAL

for the
CALCOMP PREVIEW SYSTEM

Prepared for the
DEFENSE COMIICATIONS ENGINEERING CENTER

Contract No. DCA 100-77-C-0037
Subtask 80-3.1

April 1981

LT: S iIC I Y llI .I

?RC (DCEC)
Control Nc. 30-3.1-2

PROGRAM MALNTENANCE MANtAL
for the

CALCO PREVIEW SYSTM1
Prepared for the

DEFMSE COMMUJNICATIONS ENGINEERIING CENTER
Contract No. OCA 100-77-0'-0037

Subtask 30-3.1
ApriL' 1981

TABLE OF CONTENTS

Page

SECTION 1. GENERAL 1

1.1 Purpose of the Program Maintenance 1
Manual

1.2 Project References 1

SECTION 2. SYSTEM DESCRIPTION 2

2.1 System Application 2

2.2 Security and Privacy 2

2.3 General Description 2

2.4 Program Description 5

2.4.1 Program MAIN 5

2.4.2 Specialized Subroutines 22

2.4.2a ASK 22

2.4.2b BLANKR 22

2.4.2c BOX 23

2.4.2d CALTEK 25

2.4.2e CIRCLE 26

2.4.2f DECODE 28

2.4 .2g DEFALT 29

2.4.2h DRAW 29

2.4.2i FETCH 31

2.4.2j HELP 33

2.4.2k OPMSG 34

2.4.21 SPECL 35

2.4.2m SPLINE 40

2.4.2n STNDRD 44

2.4.2o WINDOW 47

2.4 .2p GETFIL 48

ii

TABLE OF CONTENTS

Page

2.4.3 Service Subroutines 49

2.4.3a LLSQ 49

2.4.3b SYNHGT 49

2.4.3c TRANS 49

2.4.4 String Handling Routines 30

2.4.5 Graphic Subroutines 53

2.5 Program Logic Descriptions 53

SECTION 3. ENVIRONMENT 91

3.1 Equipment Environment 91

3.2 Support Software 91

SECTION 4. PROGRAM MAINTENANCE PROCEDURES 92

4.1 Retrieval Procedures 92

4.2 Extensions to a Different Machine 95

4.3 Additional Co-ands 97

iii

LIST OF FIGURES

Page

FIGURE 2-01 System Flowchart (NASC AS/5-3 3

FIGURE 2-02 System Flowchart (PDP-U/70) 4

FIGURE 2-03 Drawing the Letter 'A' 38

FIGURE 4-01 Sample JCL for Assembling String Handling 93
Routine

FIGURE 4-02 Sample JCL to Compile and Link Edit 94
a Module of the CALCOMP Preview Program

FIGURE 4-03 Listing of Overlay Structure on PDP-11/70 98
([60,20]CLTOTK.ODL)

FIGURE D-01 Sample CALCOMP Plot File D-04

iv

SECTION 1. GENERAL

1.1 Purpose of the Program Maintenance Manual. The objective of the Program

Maintenance Manual for the CALCOMP Preview System (CPS) is to provide

the maintenance programmer personnel with the information necessary

to maintain the system.

1.2 Project References. The uevelopment of the CALCOMP Preview System

was authorized under Subtask 80-3.1, CALCOMP to Tektronix Conversion,

under contract DCA 100-77-C-0037. The following documentation provides

information useful in understanding the system:

a. CALCOMP Model 7000 PLOTTING SYSTEM User's Manual, DCEC (R830),

1 Oct 76.

b. CALCOMP Basic Software, CAL EDIT User's guide, California

Computer Products, Inc. May 1975.

c. TEKTRONIX PLOT 10 Terminal Control System User's Manual.

d. System/360 Scientific Subroutine Package (360A-CM-03X)

Version II Application Description, 1967.

e. Users Manual for the CALCOMP Preview System, March 1981.

1A

' "- I "- . . . :.: IL' ;s .f i,

SECTION 2. SYSTEM DESCRIPTION

2.1 System Application. The CPS enables a user to evaluate the contents

of a data tape prepared for the CALCOMP flatbed plotter by displaying a

similar image on the Tektronix graphic display terminal. Representative

uses include:

Evaluating a plot file before plotting it on the CALCOMP plotter.

Determining an appropriate scaling factor and offset before

submitting the plot file to the CALCOMP plotter.

Obtaining plot images when the CALCOMP plotter is inoperative

or heavily used.

CPS provides a set of commands to control scaling, rotation, and positioning

of the display on the terminal screen. At any time, the user may make

a copy of the image using the hard copy attachment to the display terminal.

This capability allows the user to access the data on a CALCOMP plot

tape at will, without requiring the support of a plotter operator.

This preliminary review feature enables the user to confirm that the

data is ready for plotting, and thus provides a significant saving

in time and costs.

2.2 Security and Privacy. The CPS is unclassified, and is subject

to no privacy restrictions. Each user is responsible for observing

security or privacy restrictions applicable to any files plotted

through the system.

2.3 General Description. The system consists of one program, which

is run as a stand alone job when required. It is available for the

HSF NASC AS/5-3 and on the MIGS PDP-11/70 system. Under the NASC system,

a CALCOMP plot file must be placed on disk to be accessed under TSO.

Under the PDP-l1/70, the plot file may be either on disk or on a magnetic

tape file. See Figures 2-01 and 2-02 for system flowcharts.

2

-o

.6JL

10 u0

Q-44

z 44

cc 0 0 4 -A

i- I.~

~;9

-4-

.61.

-6 &j
.4- -4

ad-

z1

2.4 Program Description. The CPS includes one main program and 36

subroutines on the NASC AS/5. On the PDP-I!/70, the CPS includes one

additional subroutine (37 total).

2.4.1 Program MALN.

a. Identification: MAIN.

b. Functions: MAIN performs major functions:

Initialization.

Accepting and interpreting user commands.

Setting global variables to execute user commands.

Plotting an input CALCOP file, when commanded.

Dumping an input CALCOMP file when commanded.

Termination.

The program is written in FORTRAN _V, in a too-down fashion, so that most

of the general and detailed functions are performed by subroutines, which

may be grouped into four classes:

Specialized subroutines written to support this project. These

are, in effect, an extension of MAIN, and have been separated

for ease of maintenance and understanding. See para 2.A.2 .

Service subroutines for mathematical computation. Most of

these have been written to support MAIN and its specialized

subroutines, but are called from various places in the program

when needed. See para 2.4.3.

String handling routines for character manipulation.

See para 2.4.4.

Graphics subroutines provided by the Tektronix Corporation

to establish an interface between application programs an. the

Tektronix 7raphic display terminal. See para 2.4.3.

I
Virtually all of the communication among the specialized subroutines is

done through one labeled COMMON block (COMBLK), which contains the global

variables of the program. (See para 2.4.le for a description of the

labeled COMMON block and the global variables.)

c. Input.

(1) User commands are entered through logical unit 5 (usually

ailocated to the terminal). They are free form, and zonsist

of lines of 60 bytes or less. See the user's manual

(ref. l.2e) for a detailed description of all user commands.

(2) Graphic input is entered through the Tektronix -raphic

terminal via subroutine SCL'RSR. This data consists of

three values: one byte of data, entered from the terminal,

and two integers - the X and Y coordinates of the screen

cursor (controlled by the user) when the REMIRN key is

pressed. The program uses this facility to control

certain aspects of the plotting.

(3) CALCOIP plot files are the main data input. These files

are produced by CALCOMP subroutines called by other

application programs. Each record contains a 4 byte

'sync code' - the hexadecimal characters X1-191917'

followed by - CALCOMP 'sentence' in a modified ASCII

code.

On the HSF NASC AS/5-3, they are in the format of records

produced by the FORTRAN unformatted 'WRITE statement and

have the following characteristics:

RFCFM = VBS

LRECL - 364

BLKSIZE - 368

In other words, they consist of the 4 byte sync code

followed by 360 bytes of data. On the PDP-1l/70, the

6

CALCOMP records are of fixed length format and zonsist

of the sync code followed by 336 characters of data. See

Appendix D and reference 1.2b for a detailed description

of the input records and the CALCOMP sentences.

d. Processing.

(1) The MAN program is initiated as a task from the operating

system, and has no parameters. it first initializes

global variables as necessary, and then enters the main

loop of the program, which repeats until the user enters

the command 'END' (which terminates the run).

(2) The main loop of the program prompts the user for input by

printing 'COMMAND?' at the terminal, and receiving an

input line from logical unit 5. Upon receiving an

input line, it matches the input to the program commands,

and takes the appropriate action. If the input cannot be

matched to a command, the program prints a warning message

and repeats the prompt message. After the action is complete,

the program again prompts with 'COM!AND?' and awaits a line

from logical unit 5. (Unless, of course, the preceding

command entered was 'END', in which case the program exits

the loop and terminates the run.)

(3) Four commands cause immediate action. They are 'PLOT',

'DUMP', 'HELP' (or '?'), and '7ND'. 'END' sets the switch

named 'END', which causes the exit from the main loop.

'HELP' branches to the internal procedure HELPER, which

further analyzes the input and calls the external subroutine

HELP to provide the user on-line assistance in using the

program. 'PLOT' and 'DUMP' both access a CALCOMP plot

file. Following either of these two commands, the program

begins to access the plot file through the subroutine

7

FETCH and returns one CALCOMP sentence for each call, until

end-of-file is encountered, and the program exits the loop.

The bits PLOT and DUMP, which are set when the commands are

interpreted, determine whether the sentence thus obtained

is interpreted (PLOT is on) or listed on logical unit 3

(DUMIP is on.)

If PLOT is on, the program calls subroutine FETCH to get

the next sentence, calls DECODE to extract the values, and,

if appropriate, calls DRAW to follow the instructions of

the sentences.

(4) The remaining thirteen commands control or modify the

performance of the next 'PLOT' comand entered by

changing the values of the global variables that

the various subroutines use in performing their

functions.

'BOX' causes the program to call the external subroutine

BOX to designate the boundaries for the next plot'directly

on the screen. See para Z.4.Zc.

'ROTATE' accepts the angle of rotation by calling external

subroutine ASK, and then modifying the variables PS!,

COSPSI, and SI.NSI in response.

'SCALE' scales the plot by accepting a scale factor

through external subroutine ASK, and then modifying

the matrix CLCRNR.

'FAST' sets the bit EXACT off.

'EXACT' sets the bit EXACT on.

8

'WINDOW' causes the program to call the external subroutine

WINDOW to allow the user to specify the limits of the plot

by entering coordinates in inches.

'NOWINDOW' loads values into the variables in labeled

COMMON that cause the entire CALCOMP plot bed to be

mapped onto the terminal screen, reserving the lower

part of the screen for operator messages. It then calls

the subroutine DEFALT to initialize the next plot to

default conditions.

'FRAME' sets the bit FRAME on.

'NOFRAME' sets the bit FRAME off.

'REORIGCN' sets the bits HALT and RRIGIN on.

'HALT' sets the bit HALT on.

'NOHALT' sets the bits HALT and RRIGIN off.

'FULLSCREEN' loads values into the variables in the labeled

COMMON block which cause the entire vertical extent of the

terminal screen to be scaled to the short extent of the

CALCOMP plot bed. It then calls the subroutine DEFALT to

initialize the next plot to default conditions.

See Table 2-01 for a logic diagram of program MAIN.

(5) Conventions - Statement labels are numbered in ascending

order. The CONTINUE statement at the beginning of the main

loop is #30. The statements before each IF are labeled

from 50-900 in increments of 50. The statements controlling

the PLOT/DUMP loop are labeled from 50-1100. Statements

in the 2000's refer to internal subroutine SCALE. See

9

Table 2-02 for a logic diagram of SCALE. Statements in

the 3000's refer to internal subroutine ROTATE. See

Table 2-03 for a logic diagram of ROTATE. Statements in

the 4000's refer to internal subroutine HELPER. Internal

subroutines are implemented using the assigned GOTO.

(6) The program requires a TSO region of 128 bytes to execute

successfully.

e. COMMON Block COMBLK and global variables. (All variables in

COMMON are declared and initialized in a BLOCK DATA subprogram.)

In the following descriptions, reference is made to parameters

extracted from CALCOMP sentences. In general, the data transmitted

in this form is identified by letters that precede numeric or

string data. The general content of the parameters is as follows:

A,B Descriptors for dashed lines; ignored by this program,

which uses Tektronix subroutine DASHA.

D Transmits pen number, or pen-up/pen-down information.

E,F Horizontal and vertical length, and hence implicitly,

orientation, of characters to be plotted in strings.

G Designates action to be taken.

I,J Coordinates of the center of a circle.

M Halt code.

N Sentence number.

P,Q,R,S The horizontal and vertical scaling matrix applied

to CALCOMP coordinates to effect scaling and rotation

within the CALCOMP system.

T The search address, used for operator intervention.

U,V Horizontal and vertical offsets applied by the

CALCOMP system.

X,Y Horizontal and vertical coordinates.

10

Additional explanations are contained in Reference 1.2b. The

structure of the sentences within the records is described in

Appendix D.

Global Variables:

AVALUE The A parameter set by default or extracted

from a CALCO1P sentence.

BDCRNR (3,2) The coordinates, in CALCONP units, of the

points which correspond to the lower left,

upper left, and upper right corners of the

screen, respectively. Mnemonic: Bed-Corners;

BVALUE The B parameter set by default or extracted from

a CALCOMP sentence.

CHCRNR (3,2) The coordinates, in inches, of the lower left,

upper left, and upper right corners of the

plotted area. Mnemonic: inch-Corners.

CHVRTC (3,2) The values of BDCRNR expressed in inches.

Mnemonic: Inch-Vertices.

CLCRNR (3,2) The coordinates, in CALCOMP units, of the

lower left, upper left, and upper right corners

of the plotted area. Mnomonic: CAL-Corners.

CLTTK (3,2) The transformation matrix to go from the

CALCOle coordinate system used in the plot file

to the Tektronix unit coordinate system passed to

the Tektronix software. Mnemonic: CAL-to-Tek.

COSPHI The cosine of PHI.

COSPSI The cosine of PSI.

COSPSX The cosine of PSIX.

COTPHI The cotangent of PHI.

CSCPHI The cosecant of PHI.

CURVE A logical variable set on if the program is

'in a spline interpolation' and set off when

the program 'goes out of spline interpolation'.

DFLTON A logical variable used to communicate the

source of the screen window now in use. It

is on if the limits are set within subroutine

DEFALT, or off if the proportions were

established by the WINDOW command. ,Mnemonic:

Default-On.

ENDFIL A logical variable set on when endfile

is reached on the plot file. Mnemonic:

End-File.

EVALUE The E parameter extracted from a CALCOMP sentence.

EXACT A logical variable set on if curves are to be

plotted as closely as possible, or off if they

are to be approximated by line segments.

FILOPN A logical variable set on if the plot file has

been opened; off otherwise. ,tnemonic:

File-Open.

FRAM A logical variable set on to cause the execution

of the actions of the 'FRAME' command.

FVALUE The F parameter extracted from a CALCOMP sentence.

12

GVALUE The G parameter most recently extracted from
a CALCOMP sentence.

HALT A logical variable set on to cause the program

to activate the screen cursor when a temporary

halt code (M) is encountered.

HEIGHT The height of characters to be drawn by operator

message request or symbol plots. It is derived

from EVALUE, FVALUE, and NVALUE, and is stored

as an integer multiple of 8.

INFILE The logical unit number of the file to be

plotted. For the NASC AS/5 it is defaulted to 30.

For the PDP-11/70 it is supplied by the user.

IVALUE The I parameter extracted from a CALCOMP sentence.

JVALUE The J parameter extracted from a CALCOMP sentence.

LENSNT The length of the CALCOMP sentence being
processed, in bytes.

LETTER (26) An array containing the letters of the alphabet.

LVALE The length of the character string used in

symbol plots or operator message displays.

MVALUE The halt code extracted from a CALCOMP sentence

or reset to zero by the plot routines.

NSNTNC The N parameter most recently extracted

from a CALCOMP sentence.

13

NVALUE The factor used by CALCOMP routines applied

to compute the height of plotted characters.

NVALUE equals 1.00 for noncentered characters

and equals 1.875 for centered characters.

See reference 1.2b for further information.

OLDX The previous value of XTEK. Used to reset the

X coordinate of the origin.

OLDY The previous value of YTEK. Used to reset the

Y coordinate of the origin.

PI The angle, expressed in radians, whose tangent is

TANPHI. This angle, and its trignometric

functions, govern the proportions of the plotting

area used on the CRT face.

PLOTNG A logical variable set on when the program

begins processing a plot file. It is used to

control the exit from the plotting'loop.

Mnemonic: Plotting.

PNDOWN A logical variable set on if the action is to

draw; off if it is to move. Mnemonic:

Pen-Down.

PRVX The previous value of =T£K. Used when value

of XT changes.

PREVY The previous value of YTEK. Used when value

of YTEK changes.

PSI The angle, in degrees, by which the plot or

window is to be rotated about the origin.

14

.. -

PSIX The angle, in radians, by which the previous

plot was rotated about the origin.

PVALUE The P parameter extracted from a CALCOMP sentence

or set by default.

QVALUE The Q parameter extracted from a CALCOMP sentence

or set by default.

RRGIND A logical variable set on either when the

user enters "'REORIGIN" or when a CALCOMP

sentence contains a reorigin instruction.

Memonic: Reorigin-Indicator.

RRIGIN A logical variable set on to allow the

user to control the origin of coordinates

with the screen cursor. Mnemonic: Reorigin.

RVALUE The R parameter extracted from a CALCOMP sentence

or set by default.

SCCRNR (3,2) The coordinates, in Tektronix units, of the

lower left, upper left, and upper right corners

of the CRT area available for plotting.

Mnemonic: Screen-Corners.

SECPHI The secant of PHI.

SINHI The sine of PHI.

SINPSI The sine of PSI.

SINPSX The sine of PSIX.

15

SNTNCE (128) An array which contains the CALCOMP sentence

being processed.

SPCIL The ASCII character associated with the most

recently received CALCOIQ sentence containing

a single symbol request (G53 code).

SPLLEN The number of bytes of data in SPLTXT.

SPLTXT (64) An array containing the untranslated ASCII

character string transmitted with the most

recent symbol plot, special symbol plot, or

operator message request (G52, G53, or G55 code).

STEP A logical variable set on when the current

Tektronix coordinates are computed.

SVALUE The S parameter extracted from a CALCOCT sentence

or set by default.

TANPHI The height of the available plotting area

divided by the width of the available plotting

area; i.e., the tangent of PHI.

TKCRNR (3,2) The coordinates, in Tektronix units, of :he

lower left, upper left, and upper right corners

of the plotted area. Mnemonic: Tek-Corners.

TVALUE The search address from a CALCOMP sentence.

UVALUE The U parameter extracted from a CALCOMP sentence

or set by default.

VVALUE The V parameter extracted from a CALCO T sentence

or set by default.

16

i L , , , .. .

XBFORE The previous value of XCAL.

XCAL The most recently received X value in

CALCOMP units, from a CALCOMP sentence.

XGAX The largest rescaled* X value, in CALCOMP

units, received during the current plot.

IThe smallest rescaled* X value, in CALCOMY

units, received during the current plot.

XOFST Amount of the most recent displacement in the

X direction, in CALCOMP units, due to

reorigin. Mnemonic: X-Offset.

XORG X-coordinate of the most recent origin before

reorigin.

XTEK The X coordinate, in Tektronix units,

derived from the current values of'XCAL,

YCAL, and CLTTK.

YBFORE The previous value of YCAL.

YCAL The most recently received Y value, in

CALCOMP units, from a CALCOMP sentence.

YMAX The largest rescaled* Y value, in CALCOMP

units, received during the current plot.

YMIN The smallest rescaled* Y value, in CALCOMP

units, received during the current plot.

17

YOFST Amount of the most recent displacement in the

Y direction, in CALCODP units, due to reorigin.

Mnemonic: Y-Offset.

YORG Y-coordinate of the most recent origin before

reorigin.

YTEK The Y coordinate, in Tektronix units, derived

from the current values of XCAL, YCAL, and

CLTTK.

*Note: Rescaled, in the descriptions of XMAX, XIN, YMAX, YMIN,

means the X and Y values resulting after the cur-rent values

of UVALUE, VVALUE, PVALUE, QVALUE, RVALUE and SVALUE

are applied to the XCAL and YCAL values extracted from the

CALCOMP sentences.

f. Local Variables:

(1) SCLRAT - Scale ratio that user enters as part of the

"SCALE" command.

(2) CALCOIT Proportions - These variables are the values used

when the CALCOP plotter bed is mapped onto the terminal

screen, reserving the lower portion of the screen for

operator messages.

(a) CLSCCR (3,2) - The coordinates, in Tektronix units, of

the lower left, upper left, and upper right corners of

the CRT available for plotting. Mmemonic:

CALCOMe-Screen-Corrers.

Actual values: 0, 721

0, 3120

4095, 3120

18

(b) CLBDCR (3,2) - The coordinates, in CALCOI4 units

of the points which correspond to the lower left,

upper left, and upper right corners of the screen

respectively. Mnemonic: CALCOMP-Bed-Corners.

Actual values: 0, 0

0, 243840

416560, 243840

(c) CLCHVR (3,2) - The values of CL3DCR expressed in

inches. Mnemonic: CALCOMP-Inch-Vertices.

Actual values: 0, 0

0, 48

82, 48

(d) CLPSI - The angle between the lower boundary of the

plot area and the diagonal of the plot area expressed

in radians. Mnemonic: CALCOMP-PSI.

Actual value: 0.52994

(e) CLTANP, CLCOTP, CLSINP, CLCOSP, CLSECP, CLCSCP are the

tangent, cotangent, sine, cosine, secant, and cosecant

respectively of PSI when CALCOMP proportions are in

force.

Actual value:

Tangent: .5858364 Cosine: 0.8628374

Cotangent: 1.706961 Secant: 1.158697

Sine: 0.5054816 Cosecant: 1.978312

(3) Tektronix Proportions - These variables are the variables

used when the plot is to use the entire screen of the

Tektronix terminal.

19

(a) TKSCCR (3,2) - The coordinates, in Tektronix units of

the lower left, upper left, and upper right corners

of the CRT available for plotting. Mnemonic:

Tektronix-Screen-Corners.

Actual values: 0, 0

0, 3120

4095, 3120

(b) TKBDCR (3,2) - The coordinates, in CALCOM units,

of the points which correspond to :he lower left, upper

left, and upper right corners of the screen respectively.

.Mnemonic: Tektronix-Bed-Corners.

Actual values: 0, 0

0, 243840

320040, 243840

(c) TXCMlR (3,2) - T1he values of TKEDCR expressed in

inches. Mnemonic: Tektronx-Inch-Vertices.

Actual values: 0, 0

0, 48

63, 48

(d) TKPSI - The angle between the lower boundary o-:

the plot area and the diagonal of the area, in

radians. Mnemonic: Tektronix-PSI.

Actual value: 0.631077

(e) TKTANP, TKCOTP, TX<SINP, TKCoSP, TKSECP, TKCSCP are the

tangent, cotangent, sine, cosine, secant, and cosecant

respectively of PSI when Tektronix proportions are

in force.

20

Actual values:

Tangent: .7619048 Cosine: 0.7954317

Cotangent: 1.3125 Secant: 1.257179

Sine: .6060432 Cosecant: 1.6500473

(4) Keyword Variables - These variables are each set to the

commands used by the CPS.

(a) KWPLOT - the word "PLOT"

(b) KWDLW - the word "DT"

(c) KWEND - the word "M0"

(d) KWQUES - the character "?"

(e) KWBOX - the word "BOX"

(f) KWROT - the word "ROTATE"

(g) KWSCAL - the word "SCALE"

(h) KWFAST - the word "FAST"

(i) KWEXAC - the word "EXACT"

(j) KWWIND - the word '"IZNDOW"

(k) KINWIN - the word "NOWINDOW"

(1) KWHELP - the word "HELP"

(m) KWFRAZM - the word "FRAME"

(n) KWNF M - the word "NOFRAME"

(o) KWRORG - the word "REORIGIN"

(p) KWHALT - the word "HALT"

(q) KWNIMT - the word "NOHALT"

(r) KWFULL - the word " FL LSCREN'

(5) RELY2, REPLY4, RZPI.YS, REPLY6, REPLY7, REPLYS, REPLY9,

and REPLII are used to extract 2 character, 4 character,

5 character, 6 character, 7 character, 8 character, 9 character,

and 11 character terminal responses respectively.

(6) LOCFLG - A logical variable which is turned off until user

enters a correct value for SCALE or ROTATE, in which case it

is turned on. Mnemonic: Local-Flag.

21

(7) 3LKREP, BLKRPI, 3LKIP2 - These variables are turned on when

the user enters a blank value for SCALE or ROTATE. 3LKRP1

and BLKRP2 are used because the ?DP-ll Fortran compiler

allows only 5 continuation cards, unless overridden, and

more than 5 lines are needed to test the values of the

REPLY array. Thus, 3LKRPl is turned on when the first

8 members of REPLY are blank; BLKRP2 is turned on when

members 9-15 of REPLY are blank; BLKREP is turned on

when both 3LKP1 and 3LKRP2 are turned on.

.. 2 Soecialized Subroutines.

a. ASK

(I) Identification: ASK

(2) This subroutine is used for prompting within the program

where needed. Given an integer parameter as argument,

it prints the corresponding prompting message on the

terminal. When the user enters a reply, the routine

translates all lower case letters to upper case and returns

the translated reply to the calling routine.

(3) Values of Integer Parameter:

"I" - Prompt saying "COMAND?"

"2" - Prompt saying "ANGLE (DEGREES)?"

"3" - Prompt saying "SCALE FACTOR?"

"4" - Prompt saying "Xf1?"

"5" - Prompt saying "Yl-?"

"6" - Prompt saying "X2u?"

"7" - Prompt saying "Y2-?"

b. 3LANKR

(i) Identification: 3LANKR

22

(2) Functions:

. Compute the transition matrix from CALCOMP coordinates

to Tektronix by calling LLSQ, using the current values

of CLCRNR and TKCRNR.

Initialize the plot by blanking the screen and

establishing window values through Tektronix

subroutines.

* Draw the frame around the plot, if required.

Replace the existing window parameters, by

calling LLSQ and TRANS using the current values of

CHCRNR, if required.

Check for errors in the transformation specified,

and terminate the ?lot if any are discovered.

(3) Processing: See Table 2-04 for a logic diagram of this

subroutine.

c. 3OX

(1) Identification: 30X

(2) Functions:

Accept boundary data for the next plot directly from

an existing plot, using the screen cursor.

Display the boundaries computed from this data on the

current plot, for user inspection.

(3) Processing:

The routine assumes that the four courners of the CRT

area being used are numbered I through 4, clockwise,

23d
L

starting at the lower left corner. It accepts screen

coordinates corresponding to any two of them, in

arbitrary order, and computes the other two. The

first three thus computed are used to compute the

corresponding values of CLCRNR, and all four are used

to draw the boundaries of the next plot on the screen.

The first part of the program uses the subroutine

SCURSR to accept two character value and two pairs

of coordinates from the screen. The character values

must be distinct character integers, 1 through 4.

The coordinates specified must be distinct. Any reply

that does not meet these conditions is ignored, and

a prompt 'INVALID REPLY' is printed. The user manipulates

the screen cursor thumbwheels to place the crosshair

at a desired point, and enters the numeral designating the

corner desired. When two valid values have been accepted,

the processing continues.

The routine determines which two corners have been

specified and computes the coordinates, in Tektronix

units, of the two missing corners of the rectangle

bounding the desired plot area. This computation

uses the trigonometric functions specified in the

labeled COM/QON block, which then computes a rectangle

whose aspect ratio is that chosen previously to be

either that of the full CALCOMP bed (default or

'NOWINDOW') or that of the full Tektronix screen

('FULLSCREEN').

When all four corners are known, the routine inverts

the transformation for the first three points to

establish new values for CLCRNR, and draws the

rectangle boundary on the terminal screen. It then

24

displays the screen cursor once more, to dump the

Tektronix routines' buffer and to allow the user to

control the location of the next printed output.

See Table 2-05 for a logic diagram of BOX.

(4) Local Variables.

(a) POINTS(2) - The numbers of the corners that the user

specified to enclose the box.

(b) X(4) - The X coordinates of the four corners of the box.
(c) Y(4) - The Y coordinates of the four corners of the box.

(d) RH02, RH03, RHO4, THETA2, THETA3, THETA4 - These

variables are used to derive the coordinates of all four

corners of the box when the coordinates of two corners

are known.

(e) PNT12 - turned on if corners 1 and 2 were entered.

(f) PNT13 - turned on if corners I and 3 were entered.

(g) PNT14 - turned on if corners I and 4 were entered.

(h) PNT23 - turned on if corners 2 and 3 were entered.

(i) PNT24 - turned on if corners 2 and 4 were entered.

(j) PNT34 - turned on if corners 3 and 4 were en~ered.

d. CALTEK

(1) Identification: CALTEK

(2) Functions:

Convert the CALCOMP coordinates given to the Tektronix

coordinates needed for plotting.

Establish values for the largest and smallest CALCOIQ

coordinates encountered during a plot.

Establish the values of XBFORE and YBFORE, when a

circle or circular arc is to be plotted, i.e. when

GVALUE is 2 or 3.

25

4..

(3) Processing:

If GVALUE is 2 or 3, the current value XTEK and YTEK

become the values of XBFORE and YBFORE.

The rotations and offsets specified by PVALUE, OVALUE,

RVALUE, SVALUE, UVALUE, and VVALUE are used to form

intermediate variables XPRMIE and YPRLME (the rescaled

coordinates). The rescaled coordinates are still in

CALCOMP units, and are the effective CALCOMP coordinates

that were specified in the plot file.

The rescaled coordinates are then mapped into Tektronix

coordinates using the matrix CLTTK. Meanwhile, the bit

STEP is turned on to indicate that the current Tektronix

coordinates have been computed.

* The maximum and minimum values of the rescaled coordinates

are updated.

See Table 2-06 for a logic diagram of CALTEK.

e. CIRCLE

(1) Identification: CIRCLE

(2) Function: Draw circles or ellipses.

(3) Processing:

Locate the center of the circle (XCENTR, YCLNTR) using

XBFORE and YBFORE, IVALUE, and JVALUE by adding MFORE to

IVALUE and YBFORE to IVALUE. This yields the coordinates

of the center of the circle.

Determine whether to draw a full or partial circle by

comparing the distance from the center to (XBFORE, YBFORE) to

the distance from the center to (XCAL, YCAL). If the distances

are equal, draw a partial circle - if not, draw a full circle.

Compute the value of the angular increment: If the logical

variable EXACT is on, DELTA is the smallest increment

26

Ai

which will cause a Tektronix coordinate change of

I unit. If not, it is 1/32d of the angle subtended

by the circle.

The sign of DELTA is determined by the direction

of the circle. If GVALUE is 2, the circle is clockwise,

and DELTA is negative: If GVALUE is 3, the circle is

counterclockwise and DELTA is positive.

Compute coordinates in raw CALCOMP coordinates for

points on the circle, call CALTEK to convert them

to Tektronix coordinates, and draw to the points

thus determined, until the circle is completed.

See Table 2-07 for a logic diagram of CIRCLE.

(4) Local Variables:

(a) XCENTR - X coordinate for center cf circle (integer).

(b) YCENTR - Y coordinate for center of circle (integer).

(c) DET - Determinant of matrix CLTTF (CAL-co-Tek

transformation matrix).

(d) STANG - Starting angle.

(e) ENDANG - Ending angle.

(f) DELTA - Angu2.ar increment.

(g) GTANG - Logical variable turned on either when the

is greacer than the ending angle (when the increment is

positive) or when the angle is less than the ending

angle (when the increment is negative). Meaning:

Greater angle.

(h) SIGN - The sign of the angular increment. Equals I when

DELTA is positive. Equals -. when DELTA is niegative.

(i) CENTRX - X coordinate for center of circle 'floating

point).

(j) CENTRY - Y coordinate for center :f zircle "floating

point).

27

f. DECODE

(I) Identification: DECODE

(2) Function: Extract values from CALCOMP sentences and place

them into the appropriate global variables.

(3) Processing:

One complete sentence is processed at a time. The

routine scans the sentence, locating the letters that

identify numeric parameter values. For each

identifying letter, in turn, the numeric characters

immediately following it are extracted and converted

into numbers.

Depending upon the identifying letter, the appropriate

global variable is assigned a new value. Generally,

the global variable name is constructed from the

identifying letter followed by 'VALUE', so that the

value for J goes in JIVALUE, etc.

There are some exceptions:

D1 and D2 CALCOMP codes are used to set the bit PNDOWN on

or off, respectively. When a G53 code (special

character plot) is encountered, the value of SPCIL

(special character) is used to set NVALUE to either

1.875 or 1.000 as appropriate.

When a G5 code is encountered, the GVALUE becomes 5

on the odd-numbered encounters, and 0 on even-numbered

encounters. This is done because G5 codes come in

pairs. The first of a pair begins a curve plot - the

other ends it. See the discussion of subroutines

DRAW and SPLINE for details.

See Table 2-08 for a logic diagram of DECODE.

(4) Local Variables:

(a) INTVAL - current integer value within CALCOMP system.

28

(b) Pointer variables - below is list and meanings:

PNTR - Pointer to current letter code

N=EXT - Pointer to next letter code

PNTRHD - Hold area for PNTR

LEN - Length of sentence between PNTR and end

of sentence.

(c) ENDFND - logical variable that is turned on when

end of CALCOMP sentence is found.

(d) RSTSEN(128) - Remainder of CALCOMP sentence from

PNTR to the end. Mnemonic:

Rest-of-Sentence.

g. DEFALT

(1) Identification: DEFALT

(2) Function: Establish the default scaling and rotation

parameters.

(3) Processing: Default values are assigned to the scaling and

rotation parameters. The bit DFLTON is set on to indicate default

scaling and rotation parameters are being used. A call to 0PMSG

is made to initialize the operator message parameters.

(4) See Table 2-09 for a logic diagram of DEFALT.

h. DRAW

(1) Identification: DRAW

(2) Functions:

Interpret the command words contained in the data

extracted from the current CALCOMP sentence, and call

the subroutine required to take the action.

At the end of each plot, set up the parameters needed

for optim-1 plotting of the same file.

29

(3) Processing:

Obtain new variable values by calling DECODE and CALTEK.

Inspect MVALUE for non-zero halt codes.

If MVALUE is 1, a temporary halt has been commanded.

If the bit HALT is on, activate the screen cursor to

accept one byte of data, plus coordinates, from the

terminal. If the byte is a p or a P, suspend the plot

by turning the bit PLOTNG off. If the byte is a

period (.) stop the plot by calling WRAPUP, an internal

procedure. Reset MVALUE to zero.

* If M1VALUE is 2, reset .MVALUE to zero, then stop

the plot by calling WRAPUP.

If XVALUE is zero, inspect GVALU E for the action

to be taken, and take them. The values of GVALUE

and the actions taken are as follows:

1 Draw or move to the current coordinates (TEK,

YTEK).

2,3 Call CIRCLE to draw circles and circular arcs.

5 Call SPLINE to plot curv7e segments. Since the

coordinates used in a spline ploc are preceded

and followed by a G5 sentence, the function of

the G5 code is to start the spline interpolation,

or to stop it, al.erately. This program accom-

plishes this by code both in DECODE and here.

Within DECODE, if a G5 code is encountered, and

GVALUE is not 5, it is set to 5. If GVALUE is 3

it is set to zero. Therefore GVALUE is 5 only

when spline interpolation is going on. The call to

SPLINE sets the bit CURVE on to indicate spline

interpolation (used later).

52 Call STNDRD to plot a character sting.

33 Call SPECL to plot a single special character.

30

-S]

25 Effect a reorigin of the coordinate system, by

replacing the last row in the array CLTTK. If the

bit RRGIND (reorigin indicator) is not yet turned

on, turn it on, set the values of XOFST and YOFST

to XBFORE and YBFORE, and set XORG and YORG to

the last row of the array CLTTK (current origin).

If the bit RRIGIN for a user desired reorigin

is on, the new values for the origin are the

X, Y coordinates returned from the screen cursor.

If not, they are the present values of OLDX, OLDY.

The external subroutine WRAPUP is used to terminate

a plot and set optimal values for replotting the same

file. The maximum and minimum values of XTEK and

YTEK have been collected in .MAX, YMAX, M4IN and YMIN.

They are compared to the proportions of the screen

that are currently in use, and appropriate values

are assigned to the array CLCINR. WRAPUP is called as

a separate subroutine.

See Tables 2-10 and 2-il for logic diagrams of DRAW

and WRAPUP respectively.

i. FETCH

(1) Identification: FETCH

(2) Function:

Handles all communication with the plot files; includes

opening and closing the file, reading records, and

extracting CALCOMP sentences from them. The functions

are controlled by an integer argument. When it is zero,

the procedure places the next CALCOMP sentence into the

global variable SNTNCE, in character form. If a quoted string

is encountered, its CALCOMP ASCII value is placed into SPLTXT.

31

- .-

In addition, if the string is only one byte long, its CALCOMP

ASCII value is placed into the lower-order byte of SPCIL.

(3) Processing:

FETCH has one argument, IFUNCT, which has three possible

values. When IFUNCT - 0, the next CALCOMP sentence is

retrieved. When IFUNCT = 1, the plot file is opened. 'When

IFUNCT - 2, the plot file is closed. If none of the above

values are present, the program will stop with a code of 1040.

The formation of a CALCOM sentence from :he data in the plot

file records depends upon the following observations about

the structure of the records and the structure of the

sentences:

Each record is a fixed length with the first four bytes

containing '?99?', the 'sync code', with the

remaining bytes of the record containing the data.

The end of the data is marked by the character 'S'

not in a quoted string.

A quoted string is delimited by the character

in pairs (for example, the string - !THIS IS A HEADING:).

The character ':' may appear in a quoted string only

if the string is one byte long - resulting in the

pattern '!:' transmitting the character '.

A CALC0MP sentence is terminated by a period ('.') outside

of a quoted string (for example, the sentence N25D2XY.

terminates with a period).

CALC0M sentences may be broken up over more than

one physical record.

See Appendix D for further description of a CALCOMP file

and examples.

The routine maintains a set of bit variables and integer

pointers as place and status markers to allow for various

configurations of sentences in records.

32

j ,.ki IT I]° . .I I " " ' " ,I ,i

The variables are:

RCDNDD - Requests that a record be read. Mnemonic:

Record-Needed.

SCANST - Offset of the next uninspected byte.

Mnemonic: Scan-Start.

BLDST - Offset of the next byte to be placed into

the sentence. Mnemonic: Build-Start.

INSTRG - A quoted string delimiter has been found

on the left.

TEPI2T - Offset of the next ' ' after SCANST.

BREAK - Offset of the next '$'.

STRSTT - Offset of the next

ECL - Equal to '.'. On the NASC, exclamation points

cannot be printed.

The processing proceeds by using the aforementioned

variables and the substring functions to control the

formation of the sentence. The code is straight-

forward. Note that the sentence is restricted to be

512 bytes long, and the quoted strings are restricted to

255 bytes. This is expected to be adequate for' any

realistic use of the plotter. See Table 2-12 for a

logic flow of FETCH.

j. HELP

(1) Identification: HELP

(2) Function: Place program messages on logical unit 6.

(3) Processing:

HELP has one argument, MSGNO, which determines the message to

be printed. Actual message numbers are listed below:

MSGNO-l - Prints out opening message.

MSGNO-2 - Prints out list of available commands.

MSGNO-3 - Prints out information on how to use "PLOT" command.

MSGNO-4 - Prints out information on how to use "DUIP"

command.

33

MSGNO-5 - Prints out information on how to use "SCALE"

command.

MSGNO-6 - Prints out information on how to use "ROTATE"

command.

MSGNOU7 - Prints out information on how to use "WINDOW"

command.

MSGN0-8 - Prints out information on how to use "NOWINDOW"

command.

XSGNO-9 - Prints out information on how to use 'HALT"

command.

MSGNO=10 - Prints out information on how to use "NORALT"

command.

MSGNO=ll - Prints out information on how to use "D"

comand.

MSGNO-12 - Prints out information on how to use "NOFR2AME"

command.

MSGNO13 - Prints out information on how to use ". RAr"

command.

MSGNO-14 - Prints out information on how to use "BOX"

command.

MSGNO=15 - Prints out information on how to use "REORIGIN"

command.

MSGNO=16 - Prints out information on how to use "FA7"

command.

YSGNO-17 - Prints out message saying "INVALID COM'D".

M.SGNO-18 - Prints out information on how to use "EXACT"

command.

MSGNO-19 - Prints out information on how to use

".MTLLSCREEN" command.

k. OPMSG

(i) Identification: OPMSG

(2) Functions: Process operator messages, or reset initial

conditions for them.

34

(3) Processing:

OPMSG has one argument, FLNCT. When FLYCT = 0, the initial

conditions for the messages are reset; otherwise operator

messages are processed. T"he routine sets the character

size based upon the length of the operator messsge. It

computes the location for each line to be printed, starting

below the default bottom limit at the line Y=720 on the

CRT screen, writes the message at the appropriate location,

and activates the screen cursor.

If 'RRIGIN' is on, it resets the origin of

coordinates by replacing the last row of CLTTK with

the values of IX and IY returned from the screen cursor.

It then resets the screen window to its former values

and returns. See Table 2-13 for logic flow of OPMSG.

(4) Local Variables:

(a) XSTR(65) - Stores contents of the operator message

to be displayed on the terminal.

(b) LINE - The actual line on the terminal where the

message is to be displayed , normally at the

bottom of the terminal.

(c) LINES - The number of lines in the operator message.

(d) POINTS - Number of points already plotted.

1. SPECL

(1) Identification: SPECL

(2) Function: Plot a single special character on the screen.

(3) Processing:

Call SY.MGT to establish the orientation of the

character in the variables CSTHET and SNTHET.

If invalid values are detected for CSTHET, SNTHET,

or HEIGHT, the program returns to the caller.

35

* Otherwise, it draws the character, using the value of

SPCIL as an index to the array POINT, which, in turn,

contains pointers to the array ENTRY, which gives

drawing directions for each character.

For any given special character, (SPCIL), POINT

(SPCIL + L) is the subscript of the first value in

ENTRY for that character. POINT (SPCIL + 2) is the

subscript of the value in NTRY following the last value

for that character. For ease of addressing, PSTART is

set to POINT (SPCIL + 1) and PBNfD is set to POINT

(SPCIL + 2) - 1. Note, the subtraction of 1 is needed in

order to get the last value for a given character since

POINT (SPCIL + 2) points to the first value in ENTRY for

the next character.

The values in ENrRY are in pairs. They give the

direction and length of the next move or draw required

by the character.

The X value is first, followed by the Y value. fC

the X value is 100 or more in absolute value, it is

regarded as a move -- otherwise it is a draw.

The length of the moves and draws are integers from

0 to 8, inclusive. A move is coded, in the X value,

with an absolute value 100 greater than its true value,

and with the appropriate sign.

The signs are: + for up or right.

- for down or left.

The characters are drawn on an 8 by 3 unit grid,

which is magnified by HEIGHT and rotated using CSTHET

and SNTHET to compute new values for XCAL and YCAL.

CALTEK is used to convert the XCAL and YCAL values to

XTEK and YTEK.

The draw or move, as appropriate, is done.

36

For example, the letter 'A' has the ASCII value 49

when plotted as a special character. The corresponding

values are:

POINT (50) = 767

POINT (51) - 783

ENTRY (767) to ENTRY (782) are

0,6,2,2,2,0,2,-2,0,-6,-106,4,6,0,-106,-4

See Figure 2-03 to see how the plot works.

The first 16 values are centered, and the remaining 48

values are started from the lower left corner. In either

case, the beam returns to the starting position after

the character is complete.

See Table 2-14 for logic diagram of SPECL.

(4) Local Variables:

Due to limitations in the number of continuation statements

allowed in FORTRAN, several smaller arrays have been set

equal to the actual values of the arrays POINT and ENTRY.

The values are placed in POINT and ENTRY through equivalence

statements.

(a) POINT(65) - Contains pointers to the array ENTRY.

The small arrays used to initialize POINT are

described below:

PNTSPC(32) - Contains pointers to the array ENTRY for

all characters whose ASCII representation is less than

the ASCII representation for zero. Mnemonic:

Pointer-to-Special-Characters.

PNTNM(33) - Contains pointers to the array ENTRY

for all characters whose ASCII representation is

greater than or equal to that of zero. Includes

pointers to all numerics and alphabetic characters.

Mnemonic: Pointer-to-Nor~mal-Characters.

37

ii

• • (2,2) (2,0)

* e s
(0,6) (2,-2),

(-106,4)m • ,(6,0) o

N-.o ' , a

J -

* .s

Start point * * 6 0 •
(-106,-4) (O,-6)

The values of ENTRY for the letter A among the special characters are:

(0,6,2,2,2,0,2,-2,0,-6,--106,4,6,0,-106,-4)

resulting in the moves and draws shown above.

DRAW

.--VE

Note: Same technique is used to draw standard ASCII characters and

special characters.

Figure 2-03: Drawing the Letter 'A'

38

(b) ENTRY(973) - Gives drawing directions for each

special character. The small arrays used to initialize

ENTRY are described below:

LSBLKI(66), LSBLK2(58), LSBLK3(76) - Contains drawing

directions for special characters whose ASCII representa-

tion is less than the representation for a blank.

Mniemonic: Less-than-blank.

BLKCHR(6) - Contains drawing directions for blank

characters. Mnemonic: Blank Character.

SPCHR(58), SPCH2(64), SPCHR3(74), SPCHR4(24) -

Contains drawing directions for all special characters

whose ASCII representation is greater than that of blank

and less than that of zero. Mnemonic:

Special-Characters.

1NtMO3(80) - Contains drawing directions for the

numeric characters from 0 to 3.

NUM46(58) - Contains drawing directions for the

numeric characters from 4 to 6.

NUM79(64) - Contains drawing directions for the

numeric characters from 7 to 9.

NUMSYM(72) - Contains drawing directions for all special

characters whose ASCII representation is greater than the

one for 9 and less than the representation of the "at

sign",@. This array is called UMMSY, because it contains

drawing directions for numeric symbols used in

comparisons.

QUESAT(66) - Contains drawing directions for the

question mark and the at sign.

LETAE(82) - Contains drawing directions for the

letters from A through E.

39

LETFJ(70) - Contains drawing directions for the

letters from F through J.

LETKO(60) - Contains drawing directions for the

letters from K through 0.

(c) SNTHET, CSTHET - The sine and cosine of the angle of

orientation for the special character to be printed.

These arguments are returned from subroutine SY.HGT.

(d) DELTAX, DELTAY - Change in the X and Y directions

respectively, while character is being drawn.

(e) PSTART - The subscript of the first value in ENTRY

for a given character. Equal to POINT (SPCIL +1).

Mnemonic: Pointer-Start.

(f) PBND - The subscript of the last value in ENTRY for

a given character. Equal to POINT (SPCIL +2) -1.

Mnemonic: Pointer-Bound.

m. SPLLNE

(1) Identification: SPLINE

(2) Function: Simulate the spline interpolation function of

the CALCOMP plotter.

(3) The logic of this subroutine is governed by the sequence

of sentences produced for this function in the CALCOMP

file. Spline interpolation is initiated by a G5 code, then

the necessary coordinate pairs are supplied in following

sentences, and finallv a second G5 code terminates the inter-

polation. This is implemented in subroutine DECODE by setting

GVALUE to 5 on the first G5 call and to zero on the

second; i.e., to 5 on the odd-numbered occurrences

40

AlJ

of the G5 code and to zero on the even-numbered occurrences

thereafter.

The effect of this is to turn spline interpolation
"on" and "off" by alternate occurrences of the

G5 code in sentences.

Once the G5 code is detected, SPLINE is called

for the sentence containing the G5 code and each

subsequent sentence until GVALUE is set back to zero.

The first call to SPLINE on a new interpolation

is accompanied by the previous values of XTEK and

YTEK, so that five calls are needed before the

first interpolation takes place. After that,

each subsequent call results in another segment

of the curve being plotted.

If the. parameter FUNCT is zero, reset all variables

to initial conditions, and return. (This is turning

the spline function off.)

The following is what happens when FUNCT is non-zero.

Increment COUNT by 1, and store the current values

of XTEK and YTEK in a work vector.

If COUNT is 5, then the plotting is effected. If

the flag EXACT is .TRUE., then the interpolated values

are computed using a polynomial fit with a step size

just large enough to provide a movement of one

TEKTRONIX unit at each step. If EXACT is .FALSE.,

then the interpolation is omitted, and a straight

line is drawn between the points.

In either case, the latest four points are moved up,

so that the oldest point is discarded. Then the inter-

polation is done from the second to the third point.

41

If the leading two points or the trailing two points

are not distinct, then the curve interpolation is

lone by a quadratic fit. Otherwise, a cubic fit is

used. The subroutine solves the interpolation

problem by computing a vector of coefficients in

terms of a parameter TX, which is then varied from -1

to +L in appropriate steps to compute the intermediate

points. Then COUNT is set to 4 so that it will become

5 on the next call to this routine, and the subroutine

is terminated.

See Table 2-05 for a logic diagram of SPLINE.

(4) Local Variables:

(a) RUNX(5) - Stores X coordinates of the current set of

points to be plotted with interpolation being performed

between the points whose X coordinates are represented

by the second and third members of this array. The

first and fourth members are used f"or curve fitting.

At the beginning of each call to SPLINE, the desired

X coordinates are stored in the second through fif'th

members, but they are all moved to the previous spot

in the array before interpolation begins.

(b) RUNY(5) - Stores Y coordinates of the current set of

points to be plotted with interpolation being performed

between the points whose Y coordinates are represented

by the second and third members of this array. The

first and fourth members are used for curve fitting.

At the beginning of each call to SPLINE, the desired

Y coordinates are stored in the second through fifth

members, but they are all moved to the previous spot

in the array before interpolation begins.

42

(c) COUNT - Count of the number of points placed in RUNX

and RUNY. Used to control moves and draws. When

COUNT=3, the plotter beam is moved to the starting

point of where the curve is to be plotted. When

COUNT-5, the plot between any pair of points is being

performed, after which COUNT is reset to 4, in

preparation for the next interpolation.

(d) Xl - The X coordinate of the starting point of the

curve segment where interpolation is to be done. Equal

to RUNX(2).

(e) Y1 - The Y coordinate of the starting point of the

curve segment where interpolation is to be done.

Equal to RUNY(2).

(f) X2 - The X coordinate of the ending point of the curve

segment where interpolation is to be done. Equal

to RUNX(3).

(g) Y2 - The Y coordinate of the ending point of the curve

segment where interpolation is to be done. Equal

to RUNY(3).

(h) QUADCO(3,2) - Stores coefficients needed for quadratic

interpolation. Each member QUADCO (*,I) stores

coefficients for X while each member QUADCO (*,2)

stores coefficients for Y.

(i) CUBCOF(4,2) - Stores coefficients needed for

cubic interpolation. Each member CUBCOF (*,l)

stores the coefficients for X while each member

CUBCOF (*,2) stores the coefficients for Y.

43

I. ± j ,. i

(j) TX - A number between -i and 1 used as a parameter

in calculating the X and Y coordinates of any point

where the small line segments that approximate a

curve are drawn during interpolation.

(k) T2MAT(3,3) - Parameter matrLc of coefficients

used in conjunction with TX in quadratic

interpolation.

(1) T3MAT(3,3) - Parameter matrix of coefficients

used in conjunction with TX in quadratic

interpolation.

(m) T4MAT(4,4) - Parameter matrix of coefficients

used in conjunction with TX in cubic

interpolation.

(n) XCOEFF and YCOEFF - Coefficients in for X and Y

respectively, used in interpolating.

(o) XCORD and YCORD - The X and Y coordinates of the

intermediate endpoint where a small line segment is

to be drawn during the interpolation process.

n. STNDRD

(1) Identification: STNDRD

(2) Function: Plot a string of ASCII characters on the CRT.

(3) Processing:

. Call SYMHGT to establish the orientation of the

characters in the variables CSTRET and SNTMET.

If any invalid values are detected, the program

returns to the caller without taking any other

action.

44

Otherwise, it draws each character in the string.

The number of characters to be drawn is in COMMON

in LVALUE. The technique for drawing the characters

is identical to that used for subroutine SPECL (para

2.4.2 1 above) except that the beam is positioned

at the lower right hand corner of the 8 by 8 grid

after each character is drawn, and is therefore

positioned properly to start the next character.

See Table 2-16 for a logic diagram of ST.NDRD.

(4) Local Variables:

Due to limitations in the number of continuation statements

allowed in FORTRAN, several smaller arrays have been set

equal to the actual values of the arrays PNTR and ENTRY.

The values are placed in P!T and ENTRY through equivalence

statements.

(a) PNTR(65) - Contains pointers to the array ENTRY. The

small arrays used to initialize PNTR are described

below:

PNTRl(36) - Contains pointers to the array ENTRY

for the first 36 standard characters.

PNTM2(29) - Contains pointers to the array ENTRY

for the last 29 standard characters.

(b) ENTRY(994) - Gives drawing directions for each

standard character. The small arrays used to initialize

ENTRY are described below:

LOWCHl(52), LOWCH2(56), LOWCH3(52), LOWCH4(60),

LOWCHR(22) - Give drawing directions for all

standard characters whose ASCII representation is

less than the representation for zero.

45

NUM03(80) - Gives drawing directions for the numeric

characters from 0 to 3.

NUM47(68) - Gives drawing directions for the numeric

characters from 4 to 7.

NUM89(54) - Gives drawing directions for the numeric

characters from 8 to 9.

NUMCHR(72) - Gives drawing directions for all

characters whose ASCII representation is greater

than the representation for 9 and less than

representation for the at sign. This array is

called NUMCER because it continues many of the

numeric comparison operators.

QUESAT(66) - Gives drawing directions for the question

mark and the at sign.

LETAE(82) - Gives drawing directions for the alphabetic

characters from A through E.

LETFJ(70) - Gives drawing directions for the alphabetic

characters from F through J.

LETKO(60) - Gives drawing directions for the alphabetic

characters from K through 0.

LETPS(74) - Gives drawing directions for the alphabetic

characters from P through S.

LETTW(52) - Gives drawing directions for the alphabetic

characters from T through W.

LETXZ(36) - Gives drawing directions for the alphabetic

characters from X through Z.

BEYLZT(38) - Gives drawing directions for all

characters whose representation is greater than the

letter "Z". Mn-emonic: 3eyond-Letters.

46

(c) K1 - Equal to the internal representation of the

character to be plotted. Equivalent to K2.tP(2) with

KIUP(l) equal to the high order portion of K.

Used to calculate PTR, the pointer used to address

the PNTR array.

(d) PTR - The pointer to the array PNTR.

(e) PSTART, PBND, DELTAX, DELTAY, XSTHET, SNTHET are

used in the same way as they are in subroutine SPECL

which is described in para 2.4.2f.

o. WINDOW

(1) Identification: WINDOW

(2) Function: Allow the user to specify the boundaries of

the plot in terms of inches. This simulates the WINDOW

command of the CALCOMP plotter.

(3) Processing:

The program prompts the user for four values, which are

the X,Y coordinates of the lower left and upper right

corners of the rectangular boundaries of the plot. It then

computes the corresponding coordinates in CALCOMP units and

in Tektronix units, and places the resulting values into

the arrays CLCRNR and TKCRNR in COMMON, where they govern

the next plot. Finally, the signs of PSI and SINPSI are

reversed, so that any existing rotation (entered before

calling WINDOW) is applied to the area defined by WINDOW

the same as it is on the CALCOMP plotter. See Table 2-17

for logic diagram of WINDOW.

(4) Local Variables:

(a) VALUE(4) - The four values (i.e. two points) of window

data that the user entered. Below is a table of values

47

and their equivalents:

VALUE(l) = X1

VALUE(2) = Yl

VALUE(3) = X2

VALUE(4) = Y2

(b) FLAG - A logical variable that is turned on each time

the user enters a valid window value. Turned off before

each prompt.

(c) BL<EP, BLKR1P1, BLKREP2 - Logical variables that are

turned on when user enters blanks as one of the four

window values. Used the same way as the variables with

the same name in program MAIN described in Section 2.4.1.

p. GETFIL

(1) Identification: GETFIL

(2) Function: .llows the user on the PDP-Ili7(to specify the

file he wishes to plot. Also, closes any 'reviously opened

plot file. Determines whether the file is accessed from disk

Dr tape by setting INFILE.

(3) Processing:

GETFIL has one argument, IFLUN. 'When F=N equals 0, the

routine closes any previously opened plot file and returns

to FETCH. Otherwise, the program prompts the user for a

logical unit number. If the file number is only one digit,

the program inserts a leading zero. The program then builds

a data set name of the form FILEnn.DAT, where nn is the

logical unit number, and opens the file of that name. If

any error is encountered, the program displays an error

message, changes the value of INFILE to the one not yet

used, thus testing the other device type, and tries the OPEN

again. If the file cannot be opened on either tape or disk,

the routine prompts for a new file number, until it opens a

file successfully. 1NFILE is 30 for tape, and 25 for disk

files.

48

2.4.3 Service Subroutines. There are three service subroutines used

for mathematical computations. Two were written for this program, and

one was selected from the IBM Scientific Subroutine Package.

a. LLSQ - This routine is from the IBM Scientific Subroutine

Package. Its intended use is to solve the linear least

squares problem for matrix arguments. In this program, it

is used to derive the transition matrix CLTTK when those

corresponding sets of coordinates, in CALCOMP units and

TEKTRONIX units, have been established. See Appendix A

for a mathematical description of the transformations.

See Reference 1.2d for a complete description of LLSQ.

b. SYCHGT

(1) Identification: SY-1HGT

(2) Functions: SYNHGT uses its input parameters (che current

values of EVALUE, -AILUE and NVALLE) to compute three

output parameters used in plotting characters or character

strings. The output paraweters are the symbol height,

and two rotation parameters (cosine theta and sine theta).

The symbol height is an integer, rounded up from the

calculated height/8. This insures that the values

returned will work with the two character plotting

routines SPECL and S3NDRD which draw characters on a vrid

of 8 x 8 points. See Figure 2-03.

c. TRANS

(1) Identification: TRANS

(2) Function: TRANS inverts the linear transformation used

in SCOPE. That is, given a pair of points (U,V) in

coordinate system B, and the 3 X 2 transition matrix

which carries a point (X,Y) from coordinate system A

..9

into coordinate system B, it replaces (U,V) with the

preimage point (X.Y). See Appendix A for a description

of the transformation used.

2.4.4 String Handling Routines. The following 8 subroutines are used to

perform character string manipulation for the CALCOMP Preview System.

On the NASC system, these routines are written in IBM assembler, while

on the PDP-ll, they are written in PDP Fortran 4 .

INDEX VERIFY

SBSTRI TRNSLT

SBSTRO GSTRE

CONCAT GSTRL

Below is a description of each routine, its calling sequence, and the

abend code it returns when invalid parameters are encountered. On the

NASC, the abend code is the completion code for an A.BEND, while on the

PDP-11, the result is a STOP N, with N being the abend code. INDEX,

VERIFY, and GSTRE are functions which return an Integer *4 value. GSTRL

is a function which returns a real value. The other routines are subroutines.

INDEX - An integer function which searches a string for a spetified bit

or character configuration. If the configuration is found, the

starting position of the left most configuration within the string

is returned. Otherwise, the value zero is returned.

Example calling sequence: I = INDEX (STR1, Ll, STR2, L2)

STRI is the string to be searched; LI is the length of the portion

of STRi that is to be searched; STR2 is the character configura-

tion desired, and L2 is the length of S7R2 being dealt with in

the search. The abend code is 1003.

SBSTRI - A subroutine which replaces a certain number of characters

in one string with the same number of characters from another

string.

Example calling sequence: CALL SBSTRI (STRl, IPI, LI, STR2)

50

STRI is the receiving string, IPI is the oosition in STRI where

character replacement is to begin, LI is the number of

characters to be replaced, and STR2 is the replacement string.

No blank padding is done. The abend code is 1002.

SBSTRO - A subroutine which replaces the beginning characters of one

string with the same number of characters from another string.

If the number of characters to be replaced is not an even

multiple of 4, the remaining bytes, up to an even multiple of

4, are replaced with blanks.

Example calling sequence: CALL SBSTRO (STRI, IPl, Li, STR2)

STRIl is the replacement string; IPI is the starting position of

STRI being used in replacement; Li is the number of characters

being replaced, and STR2 is the receiving string. The abend

code is 1001.

CONCAT - A subroutine which joins together two strings and places the

results into a third string. It pads with blanks, if needed, up

to a multiple of 4 bytes.

Example calling sequence: CALL CONCAT (STR1, Ll, STR2, L2, STR3)

STR is the first string to be joined; LI is the length of STRI;

STR2 is the second string to be joined; L2 is the length of

STR2; STR3 is the replacement string. The abend code is 1005.

VERIFY - An integer function which examines two strings to verify that

each character in one string is represented in another string,

returning a value of zero, if that is the case. Otherwise, the

value returned is the position of the first byte in the first

string that is not represented in the second string.

Example calling sequence: I - VERIFY (STRI, LI, STR2, LZ)

In this case, VERIFY returns the first character in the first

LI bytes of STRI that is not found in the first LZ bytes of

STR2, or zero, if all bytes of STRL are also in STR2. The abend

code is 1004.

51

TRNSLT - A subroutine which replaces a certain number of characters

of a certain string with one of two designated tables. One

table results in converting CALCOMP ASCII to the machine

representation of the computer being used; while the other

results in lower case letters to upper case.

Example calling sequence: CALL TRNSLT (STRI, LI, ITAB)

In this case, TRNSLT translates the first Li bytes of STR

with the designated table:

If ITAB - 1, translate CALCOMP ASCII to the proper computer

representation. On the NASC, CALCOMP ASCII is converted to

EBCDIC. On the PDP-11 CALCOMP ASCII is converted to

PDP-11 ASCII.

If ITAB - 2, translate lower case letters to upper case.

The abend code is 1006.

GSTUE - A function which converts a numeric integer character string

into an integer. This implements FORTRAN I format with

length Li.

Example calling sequence: I = GSTRE (STR, Li)

In this case, GSTRE returns :he first LI bytes of STR as

an integer. The abend code is 1007.

GSTRL - A function which converts a numeric fixed character string

into a floating point real value. This implements FORTRAN F

format with length L.

Example calling sequence: X - GSTRL (STRI, LI)

In this case, GSTRL returns the first Li bytes of STRI as a

floating point value. The abend code is 1008.

52

2.4.5 Graphic Subroutines.

a. Identification: The following 10 subroutines from the

Tektronix Corporation PLOT 10 control system are used in

SCOPE.

ANMODE AOUTST DASHA DRAWA DWINDO

LNITT PNTABS SCLTRSR TERIM TINDO

b. Functions: These subroutines provide the interface to

the Tektronix graphic terminal. For details, see

Reference 1.2c.

2.5 Program Logic Descriptions.

The CALCOMP 11review program was designed, and the first NASC version

was written, using structured programming techniques available in the

PL/i language. The production program described in this manual is

written in FORTRAN IV, conforming to %NSI standards where practicable.

Those necessary functions that could not be performed using ANSI FORTRAN

were implemented in I&M assembly language for the NASC system and in

RSX-ILN Fortran 4+ for the PDP-ll.

The FORTRAN IV language does not contain the structured programming

control logic available in block structured languages such as ?L/l,

PASCAL, FORTSIX, or FORTRAN 77. This frequently obscures the underlying

program logic in the complexity of FORTRAN GOTO statements, computed

GOTOs, etc.

The tables which follow contain logical descriptions of the more

complex programs and subroutines in a pseudo-code that supplements

the descriptions in para 2.4. The logic flow is shown by the control

structures which are described below. Each description provides an

example of how it is usually implemented in FORTRAN IV. A programmer

53

who must change part of the program logic can relate the mnemonic

names to the short FORTRAN variable names and the block structure

to the FORTRAN implementation to locate the parts of the FORTRAN

code that should be changed.

A. IF-THEN-ELSE

In a block structured language, this would be written as:

IF ()THEN

(code for IF condition)

ELSE

(code for NOT IF)

ENDIF

In FORTRAN, this is coded as:

IF (.NOT. A) GO TO 200

(code for condition TRUE)

GO TO 300

200 CONTINUE

(code for condition FALSE)

300 CONTINUE

Note: Code for IF condition is indented under the IF and code

for the NOT IF is indented under the first continue.

3. DO-WHILE

This would be written as

WHILE (A)

(code)

END WHILE

In FORTRAN, this is coded as:

1000 CONTINUE

IF (.NOT.A) GO TO 2000

(code)

GO TO 1000

2000 CONTINUE

Note: Code to be done "within a DO WHILE is indented under the IF

statement. The CONTINUE statement in this case is indented

as an END statement normally would be.

54

C. DO-UNTIL

This would be written as:

UNTIL (A)

(code)

END UNTIL

In FORTRAN, this is coded as:

100 CONTINUE
(code)

IF (.NOT. A) GO TO 100

Note: Code to be done within a DO UNTIL is indented under the

continue statement refined to beneath the loop. The IF

statement is indented on the same level as the CONTINUE

to which it refers.

D. CASE (Otherwise known as SELECT)

This would be written as:

SELECT (VALUE)

When (ALT1)

(code for alternative 1)

When (ALT2)

(code for alternative 2

When (ALTN)

(code for alternative N)

Otherwise

(code for default)

END SELECT

In FORTRAN, this is implemented in one of cwo ways, depending on

the type of values involved. It is implemented as a computed GO TO

for consecutive numeric values, and as multiple IF statements, otherwise.

Computed GO TO (This example assumes 4 alternatives)

GO TO (10,20,30,40), VALUE

(code for default - value not between I and 4)

GO TO 50

10 CONTINUE

(code for first alternative)

GO TO 50

55

L. Li

20 CONTINUE

(code for second alternative)

GO TO 50

30 CONTINUE

(code for third alternative)

GO TO 50

40 CONTINUE

(code for fourth alternative)

50 CONTINUE

Multiple IF-Statements

(This example assumes 4 alternatives)

IF (VALUE.NE.ALT1) GO TO 20

(code for first alternative)

GO TO 60

20 CONTINUE

IF (VALUE.NE.ALT2) GO TO 30

(code for second alternative)

GO TO 60

30 CONTINUE

IF (VALUE.NE.ALT3) GO TO 40

(code for third alternative)

GO TO 60

40 CONTINUE

1F (VALUE.NE.ALT4) GO TO 50

(code for fourth alternative)

GO TO 60

50 CONTINUE

(code when none of the alternatives are true)

60 CONTINUE

Note: Code for each alternative is coded under the previous statement.

A CONTINUE statement is placed at the end of the FORTRAN

CASE structure.

36

I-i

Logic Description - Program MAIN

(Module discussed in Paragraph 2.4.1)

BEGIN MAIN

Set Screen-Corners, Bed-Corners, Inch-Vertices to default values.

Set angle PTI and its trig function values to CALCOMP values.

CALL DEFALT - (Sets certain parameters to default values)

CALL HELP(l) -(Types opening message to user)

UNTIL (END)

CALL ASK (1,REPLY) - (Types prompt "COMMAND?")

Extract user response REPLY

Select (REPLY)

"PFLOT" - PLOT is turned on

"DUMP" - DUMP is turned on

"END" - END is turned on, terminating the run.

"?" - CALL HELPER - (Internal Subroutine)

"BOX" - CALL BOX

"ROTATE" - CALL ROTATE - (Internal Subroutine)

"SCALE" - CALL SCALE - (Internal Subroutine)

"FAST" - EXACT is turned off

"EXACT" - EXACT is turned on

"WINDOW" - CALL WINDOW

"NOWINDOW" - BEGIN

Set Screen-Corners, Bed-Corners, Inch-Vertices to default values

Set angle PHI and its trig function values to CALCOMP values

CALL DEFALT

"HELP" - CALL HELPER - (Internal Subroutine)

"FRAME" - FRAME is turned on

"NOFRAME" - FRAME is turned off

"REORIGIN" - BEGIN

HALT is turned on

REORIGIN (RRIGIN) is turned on

END

"HALT" - HALT is turned on

"NOHALT" - BEGIN

TABLE 2-01: Logic Description - Program MAIN

(Page 1 of 2)

57

HALT is turned off

REORIGIN (RRIGIN) is turned off

END

"FULLSCREEN" - BEGIN

Set Screen-Corner, Bed-Corner, Inch-Vertices to fullscreen values

Set angle PHI and its trig function values to Tektronix values

CALL DEFALT

Otherwise - CALL HELP(17) - (Types "Invalid response")

END Select (REPLY)

WHILE (PLOT or DUMP)

PLOTTING (PLOTNG) is turned on

IF NOT (File-Open) THEN

CALL FETCH(1) - Open File

IF (PLOT) ThN

CALL BLANKR (initializes the plotting process)

ENDIF

ENDIF

WHILE (PLOTNG)

STEP is turned off

CALL FETCH(O) - (Retrieve Next CALCOMP Sentence)

IF (PLOT) THEN

CALL DRAW (Perform all graphic functions)

ELSE

Write out CALCOMP Sentence to LNIT 8

ENDIF

ENDWHILE (PLOTNG)

PLOT is turned off

DUMP is turned off

ENDWHILE (PLOT or DUMP)

ENDUNTIL (END)

END MAIN

TABLE 2-01: Logic Description - Program MAIN

(Page 2 of 2)

38I

Logic Description - Internal Subroutine SCALE

(Module discussed in Paragraph 2.4.1)

BEGIN SCALE

LOCFLG is turned off

UNTIL (LOCFLG)
Analyze REPLY (Left over from user's input command)

IF REPLY is numeric - THEN

Set SCLRAT - REPLY

LOCFLG is turned on

ELSE

SCLRAT is set to 0

ENDIF

IF SCLPAT4-_ 0 THEN

Write "Invalid Reply"

CALL ASK (3, REPLY) - (Prompt User to Enter Scale Factor)

LOCFLG is turned off

ENDIF

ENDUNTIL

Divide CAL-Corners and Inch-Corners by SCLRAT

SCALE

TABLE 2-02: Logic Description - Internal Subroutine SCALE

59

4.I

Logic Description - Internal Subroutine ROTATE

(Module discussed in Paragraph 2.4.1)

BEGIN ROTATE

LOCYLG is turned off

UNTIL (LOCFLG)

Analyze REPLY (Left in from user's command)

IF REPLY is numeric - THEN

Compute PSI REPLY/57.29578 - (Convert Degrees to Radians)

Set COSPSI COSINE (PSI)

Set SINPSI = SINE (PSI)

LOCFLG is turned on

ELSE

Write "Invalid Reply"

CALL ASK (3, REPLY) - (Prompt user to Enter Angle in Degrees)

ENDIF

ENDUNTIL

END ROTATE

TABLE 2-03: Logic Description - Internal Subroutine ROTATE

60

Logic Description - Subroutine BLA1M

(Module discussed in Paragraph 2.4.2b)

BEGIN BLANKR

Set XTEK = Tek-Corners (3,1)

Set YTEK - Tek-Corners (3,2)

Set OLDX, OLDY, PREVX, PREVY - I

Reorigin-Indicator (RRGIND) is turned off

Set CAL-To-Tek = Tek-Corners

DO: K - 1 to 3 (Create Work Matrix for use in transformation in LLSQ)

CAL-Corners (K, 1) CAL-Corners (K, 1) + XOFST

CAL-Corners (K,2) CAL-Corners (K,2) + YOFST

Work-Matrix (K,1) - (CAL-Corners (K,1)*COSPSI) + (CAL-Corners (K,2)*SINPSI)

Work-Matrix (K,2) (CAL-Corners (K,2)*COSPSI) - (CAL-Corners (K,2)*SINPSI)

Work-Matrix (K,3) 1.0

ENDDO

Set XOFST, YOFST - 0

CALL LLSQ - (Compute Transition matrix from CALCOMP coordinates to Tektronix)

IF (IER-0) THEN - (When Return from LLSQ okay)

Set PSIX - PSI

Set SINPSI - SINPSI

Set COSPSX - COSPSI

IF Default-On (DFLTON) THEN

Tek-Corners Screen-Corners

CALL INITT - (Initialize terminal; Baud rate is a parameter)

CALL TERM - (Takes advantage of features of Tektronix 4014/4015)

CALL TWINDO (Tek-Corners (1,1), Tek-Corners (3,1), Tek-Corners (1,2),

Tek-Corners (2,2)) - (Use upper and lower boundaries of terminal as parameters)

CALL DWINDO (Tek-Corners (1,I), Tek-Corners (3,1), Tek-Corners (1,2)

Tek-Corners (2,i))

NMIN, YMIN - 67108864

XMAX, YMAX - -X3IN

Inch-To-Tek - Tek-Corners

Do: K 1 to 3 - (Create Work Matrix for use in transformation in LLSQ)

TABLE 2-04: Logic Description - Subroutine 3LAN1

(Page 1 of 3)

61

Work-Matrix (K,l) - (Inch-Corners (K,l')*COSPSI) + (Inch-Corners (K,2)*SINPSI)

Work-Matrix (K,2) = (Inch-Corners (K,2)*COSPSI) - (Inch-Corners (K,!)*SINPSI)

Work-Matrix (K,3) - 1.0

ENDDO

CALL LLSQ - (Convert Transition matrix from CALCOMP coordinates to Tektronix)

CALL MOVEA (Tek-Corners (1,1), Tek-Corners (1,2)) - Move beam to bottom left

hand corner

IF (FRAME) THEN - (Draw Frame and Write Out Window Data)

CALL DRAWA (Tek-Corners (1,I), Tek-Corners (2,2))

C-ALL DRAWA (Tek-Corners (3,1), Tek-Corners (2,2))

CALL DRAWA (Tek-Corners (3,1), Tek-Corners (1,2))

CALL DRAWA (Tek-Corners (!,I), Tek-Corners (1,2))

Write 'Window Data'

CALL TRANS - (Using lower left hand corner - translate to inches)

Write out values of coordinates for lower left hand corner.

CALL TRANS - (Using upper right hand corner - translate to inches)

Write out values of coordinates from upper right hand corner

Compute SCALE = Square Root (ABS (Inch-To-Tek (1,l)*TLnch-To-Tek (2,2)) -

(Inch-To-Tek (2,l)*Inch-To-Tek (1,2))))

Write out SCALE

Write "?ress Return to Begin Plot"

CALL SCL'RSR (ICHAR, IX, IY) - (activate graphic cursor - holds display

till user enters a character)

CALL INITT (Reinitialize terminal)

CALL TERM (Reset terminal characteristics)

CALL TWINDO (Tek-Corners (1,1), Tek-Corners (3,1), Tek-Corners (1,2),

Tek-Corners (2,2)) - (Enter upper and lower bounds of terminal)

CALL DWINDO (Tek-Corners (1,I), Tek-Corners (3,1), Tek-Corners (1,2),

Tek-Corners (2,2))

(Draw Frame Before Actual Plot)

CALL MOVEA (Tek-Corners (1,i), Tek-Corners (1,2))

CALL DRAWA (Tek-Corners (l,1), Tek-Corners (2,2))

CALL DRAWA (Tek-Corners (3,1), Tek-Corners (2,2))

CALL DRAWA (Tek-Corners (3,1), Tek-Corners (1,2))

CALL DRAWA (Tek-Corners (1,1), Tek-Corners (1.2))

TABLE 2-04: Logic Description - Subroutine BLANICR

(Page 2 of 3)

62

ENDIF

ELSE (Path if LLSQ fails - IER NOT EQUAL 0)

Write 'Invalid Transformation Values'

CALL FETCA(2) - (Close Plot File)

Plotting (PLOTNG) is turned off

ENDIF

ND BLANKR

TABLE 2-04: Logic Description - Subroutine 3LA"N

(Page 3 of 3)

63

Logic Description - Subroutine BOX

(Module discussed in Paragraph 2.4.2c)

BEGIN BOX

IF NOT (Reorigin-Indicator) THEN

Set CAL-To-Tek(3,1) - XORG (Reset to X coordinate of original origin)

Set CAL-To-Tek(3,2) - YORG (Reset to Y coordinate of original origin)

Set KOFST, YOFST - 0

E.NDIF

Turn off PNT12, PNT13, PNT14, PNT23, PNT24, PNT34

Set X(I), Y(7) - 0 for I - 1,4

Set POINTS(l), POLNTS(2) = 0

UNTIL (POINTS(2)> 0)

CALL SCURSR (IX, IY, ICHAR) (Activate graphic cursor, obtain coordinates

and designator)

Compute ICHAR - ICHAR - 48 (Translate Machine Code to user response)

SELECT (ICHAR)

1,2,3,4 - BEGIN - (When the user has entered a valid first corner)

Set X(ICHAR) IX (Set X Coordinate)

Set Y(ICHAR) IY (Set Y Coordinate)

POINTS(l) - ICHAR (Sets first corner)

END

Otherwise

Write Error Message (Invalid designation of corner)

END SELECT

***Below DO 'WHILE loop is not performed unless a valid first corner has been

entered. ***

WHILE (POINTS(l)>0 and POINTS(2) <= 0) (Get second corner)

CALL SCURSR (IX, IY, ICHAR)

Set ICHAR = ICHAR - 48 - (Translate)

IF ((ICHAR NE POINTS (1) and (ICHAR EQ 1,2,3,4) AND (IX NE X(1) OR

IY NE Y(l)) THEN

Set POINTS(2) ICHAR

Set X(ICHAR) IX

Set Y(ICHAR) - IY

ENDIF

TABLE 2-05: Logic Description - Subroutine BOX

(Page 1 of 4)

64

ELS E

Write Error Message

ENDIF

ENDWHILE (POINTS(1))0 and POINTS(2) <= 0)

***If an invalid reply was received on the 'irst try, the preceding WHILE loop

is not executed, and control passes here, which executes the outer loop again.***

ENDUNTIL (POINTS(2)> 0)

Select (POINTS(l) and POINTS(2)) -(Select Desired Corners)

Corners 1,2 - BEGIN

RE02 Square Root ((X(2) - X(l)) + (Y(2) - Y(l)))

RH03 RH02 * CSCPHI

RH04 RH02 * COTPHI

THETA2 = ARCTAN ((Y(2)-Y(1))/(X(2)-X(l)))

THETA4 = THETA2 - (T / 2)

THETA3 THEA4 + PEI

X(3) RH03 * COS(THETA3) + X(l)

Y(3) RH04 * SIN(TETA3) + Y(l)

X(4) = RHO4 * COS(THETA4) + X(l)

Y(4) = RHO4 * SIN(THETA4) + Y(1)

END

Corners 1,3 - BEGIN

RH03 Square Root ((X(3)-X(l))2 + (Y(3) - Y(1)))

RHO2 RH03 * SINPHI

RHO4 = RH03 * COSPHI

THETA3 - ARCTAN ((Y(3)-Y(l))/X(3)-X(l)))

THETA4 - THETA3 - PHI

THETA2 - 7HETA4 + (7r / 2)

X(2) - RH02 * COS(TETA2) + X(1)

Y(2) - RH02 * SIN(THETA2) + Y(l)

X(4) - RHO4 * COS(THETA4) + X(l)

Y(4) - RHO4 * SIN(THETA4) + Y(l)

END

TABLE 2-05: Logic Description - Subroutine BOX

(Page 2 of 4)

65

Corners -1,4 -BEGIN

RHO4 - Square Root ((X(4)-X(l)) + (Y(4) -Y(l))

RHO2 - RH0O4 * TANPHI

RHO3 -RH04 * SECPHI

THETA4 -ARCTAN ((Y(4)-Y(l))/(X(4)-X(1)))

THEW - THETA + PHI

THETA2 -THETA4 + (7r/2)

X(3) - RE03 * COS(THETA3) + Y(l)

Y(3) - RH03 * SIN(THETA3) + Y(l)

X(2) -RE02 * COS(THETA2) +- Xcl)

Y(2) - RHO2 * SIN(THETA2) +Y(l)

Corners 2,3 - BEGIN

RHO4 Square Root ((X(3)-X(2))2 (Y(3) -Y(2)) 2

RHO2 RHO4 * TANPRI

RHO3 RHO4 * SECPHI

,=EA4 -ARCTAN ((Y(3)-Y(2))/(X(3) -X(2)))

THETA3 -THETA4 + PHI

THETA2 - THETA4 + (1712)

X(l) -X(2) - COS(THETA2) * RH02

Y(1) - Y(:) - L(HT2 * RHO2

x(4) - RH04 * COS(T-".ETA4) + X(l)

Y(4) -RHl04 * SIN(THETA4) + Y(1

Corners 4,2 - BEGIN1

RHO2 -Square Root ((X(3)-X(4))' + (Y(2) - Y(4))

RHO3 RE02 * CSCPHI

RHO4 W H2 * COTPHI

THETA2 -ARCTAN ((Y(3)-Y(4))/(X(3) - X(4)))

THETA4 -THETA2 - (r/2)

THETA3 - THETA4 + PRI

TABLE 2-05 Logic Description - Subroutine BOX

(Page 3 of 4)

66

X(1) - X(4) - COS(THETA4) * RHO4

X(l) -Y(4) - SIN(THETA) * RHO4

X(2) - RH02 * COS(THETA2) + X(l)

Y(2) - RHO2 * SIN(THETA2) + Y(l)

END

END Select

CALL MOVEA (X(l), Y(l)) - (Move to lower left hand corner of Box)

DO: J 1 1 TO 3 - (DO transformations and Draw Sides of Box)

Set Ul - X(J)

Set U2 - Y(J)

CALL TRANS (U1, U2, CAL-To-Tek)

Compute:

CAL-Corners (J,1) - (UI * COSPSX) - (U2 * SINPSX)

CAL-Corners (J,2) - (Ul * SLNPSX) + (U2 * COSPSX)

CALL DRAWA (X(J + 1), Y(J + 1)) - (Draw Side of Box),

ENDDO

CALL DRAWA (X(l), Y(l)) - (Draw last side of Box)

CALL SCURSR (ICHAR, IX, LY) - (Dump Buffer by displaying screen cursor)

Set Tek-Corners - Screen-Corners

END BOX

TABLE 2-05: Logic Description - Subroutine BOX

(Page 4 of 4)

67

Logic Description - Subroutine CALTEK

(Module discussed in Paragraph 2.4.2d)

BEGIN CALTEK

Set XBFORE - XPRIME

Set YBFORE - YPRL'IE

Set OLDX XTEK

Set OLDY - YTEK

(Apply transformations to XCAL and YCAL to result in XPRI E and YPRIME,

the absolute CALCOMP screen coordinate in floating point)

XPRLME - ((XCAL - UVALUE) * PVALUE) +

((YCAL - VVALUE) * QVALUE)

YPRL'ME - ((XCAL - UVALUE) * RVALLE) +

((YCAL - VVALUE) * SVALUE)

(Apply locally specified transformations to derive the absolute

Tektronix screen coordinates)

XTEK - CAL-To-Tek (1,I) * XPRIME +

CAL-To-Tek (2,1) * YPRLME + CAL-To-Tek (3,1)

YTEK - CAL-To-Tek (1,2) * XPRIME +

CAL-To-Tek (2,2) * YPRlME + CAL-To-Tek (3,2)

Set PRMX "

Set PREVY - YTEK

STEP is turned on

***GVALUE - 52 means plot a string of ASCII characters. GVALUE 53 means

plot a single 'special character'.***

IF (Pen-Down or GVALUE = 52 or GVALUE 53) THEN

IF XPRIME > MADX Set XMAX = XPRIME

IF XPRIME < WIN Set XMIN - XPRME

IF YPRIME)YMAX Set YMAX - YPRLME

IF YPRIME<Y.MIN Set YMIN - YPRLME

ENDIF

END CALTEK

TABLE 2-06: Logic Description - Subroutine CALTEK

68

I -

Logic Description- Subroutine CIRCLE

(Module discussed in Paragraph 2.4.2e)

BEGIN CIRCLE

(Locate Center of Circle)

XCENTR - IBFORE + IVALUE

YCENTR - YBFORE + JVALUE
Determine whether to draw full or partial circle.

Ql _ (IVALUE)
2 + (JVALUE) 2

Q2 - (XCAL - XCENTR)2 + (YCAL - YCENTR)

ST-ANG = ARCTAN (-JVALUE/-IVALUE)

ENDANG - ARCTAN ((YCAL - YCENTR)/XCAL - XCENTR))

IF (GVALUE - 2) THEN (Clockwise Circke)

IF (Ql NOT - Q2) THEN (Full Circle)

ENDANG - STANG - 2

ELSE

IF ENDANG> STANG THEN - (Partial Circle)

ENDANG - ENDANG - 2

ENDIF

Set SIGN a -1

ELSE (Counterclockwise Circle)

IF (Q1 NOT - Q2) THEN (Full Circle)

'NDANG - STANG + 2

ELSE 0

IF ENDANG <TANG THEN - (Partial Circle)

ENDANG - ENDANG + 2

ENDIF

Set SIGN - +1

ENDIF

Compute value of angular increment.

IF (EXACT) THEN (Compute smallest angular change useable to give precise circle)

Compute DET - (CAL-To-Tek(l,l) * CAL-To-tek(2,2)) -

(CAL-To-Tek(1,2) * CAL-To-Tek(Z,1))

Compute DET - DET * ((PVALUE * SVALUE) - (QVALUE * RVALUE))

TABLE 2-07: Logic Description - Subroutine CIRCLE

(Page I of 2)

69

!ib L

IF (DET - 0) THEN

RETURN

ELSE

Compute DELTA - SIGN(21r* SQUARE ROOT (Q1 * ABS (DET)))

ENDIF

ELSE (Approximate circle by polygon)

Compute DELTA a (ENDANG - STANG)/32

EUDIF

IF (DELTA = 0) DELTA - 3 * SIGN4 .

Set Q1 - Square Root (QI)

Set:

Work-Matrix (1,1) -VALUE

Work-Matrix (1,2) QVALUJE

Work-Matrix (1,3) UVALUE

Work-Matrix (2,1) RVALUE

Work-Matrix (2,2) SVALUE

Work-Matrix (2,3) VVALUE

CALL TRANS (XCENTR, YCENTR, Work-Matrix)

DO: ANGLE - STANG TO NDANG BY DELTA (Draw the Circle)

XCAL - XCENTR + COS(ANGLE) * Q1

YCAL - YCENTR + SIN(ANGLE) * Q1

STEP is turned off

CALL CALTEK

IF (STEP) THEN CALL DRAW (XTEK, YTEK)

ENDDO

END CIRCLE

TABLE 2-07: Logic Description - Subroutine CIRCLE

(Page 2 of 2)

70

Logic Description - Subroutine DECODE

(Module discussed in Paragraph 2.4.2f)

BEGIN DECODE

End-Found is turned off (End of sentence not yet found)

Set PNTR - I (PNTR points to first character in sentence)

UNTIL (End-Found)

Set PNTRfD - PNTR (Save position of current letter code)

Increment PNTR

Find next letter code; i.e. Set NEXT = to position of first non-numeric

character at or after the PNTR 'th position

IF (NEXT- PNTR) THEN

Set INTVAL - 0 (When letter code is followed by letter code)

ELSE (Extract integer value from sentence)

Set INTVAL - Numeric characters in between the PNTR 'th

and NEXT 'th positions in sentence

Set PNTR NEET (Set to position of next letter code)

ENDIF

Select (Current letter code) - (At PNTRHD 'th position)

"X" - Set XCAL - INTVAL

'Y" - Set YCAL - INTVAL

"E" - Set EVALUE INTVAL

"F" - Set FVALUE INTVAL

"I" - Set IVALUE INTVAL

"J" - Set JVALUE = INTVAL

"?" - Set PVALUE - INTVAL/10000.

"Q" - Set QVALUE - INTVAL/10000.

"R" - Set RVALUE INTVAL/10000.

"S" - Set SVALUE - INTVAL/10000.

"A" - Set AVALUE INTVAL

"B" - Set BVALUE - INTVAL

"U" - Set UVALUE - INTVAL

"V" - Set VVALUE INTVAL

TABLE 2-08: Logic Description - Subroutine DECODE

(Page I of 3)

71

06.
- .7

"- DO

Set MVALUE INTVAL

STEP is turned on

ENDDO
"T" "Set TVALUE - INTVAL

"G" - Perform G-Code Processing (Handle character strings - below)

"D"- BEGIN

IF (GVALUE NOT - 50) THEN

***GVALUE of 50 means to select the pen number. In this case, the pen number

is contained in the D code. Pen number is not significant to this program.

Otherwise, for any other value of GVALUE, Dl means pen down, D2 means

pen up. ***

Select (INTVAL)

"1" - turn on PNDOWN

"2" - turn off PNDOWN

END Select

END

END Select

IF Current position of sentence is a period turn on End-Found

ENDUNTIL

END DECODE

TABLE 2-08: Logic Description - Subroutine DECODE

(Page 2 of 3)

72

BEGIN G-Code Process

Select (INTVAL)

52, 55 - BEGIN

Increment PNTR

Set NEXTr to position of exclamation point that delimits character string

Set LVALUE -EX - PNTR

Set PNTR - NEXT + 1

Set NVALUE - 1.875

53 - BEGIN - (Distinguish centered characters from regular symbols,

based on value of SPCIL)

Set PNTR PNTR + 3

IF (SPCIL_ 15) THEN (Centered symbols)

NVALUE - 1

ELSE

NVALUE - 1.875

ENDIF

ENDDO

5 - BEGIN (Set existing '5' code back to zero, so that code interpreting

sentences know whether it is at beginning or end of spline

interpolation task.)

IF GVALUE = 5

Set INTVAL 0

END

UD Select

Set GVALUE - INTVAL (Done for all G-codes)

END G-Code Process

TABLE 2-08: Logic Description- Subroutine DECODE

(Page 3 of 3)

73

AMA

Logic Description - Subroutine DEFALT

(Module discussed in Paragraph 2.4.2g)

BEGIN DEFALT

Default-On is turned on

Set AVALUE, BVALUE = 0.5

CALL OPMSG(O) - (Set number of lines on terminal to 720)

Set GVALU - 0

Set SINPSI, PSI, QVALUE, RVALUE, UVALUE, VVALLE 0

Set PVALUE, SVALUE, COSPSI - 1

Set Cal-Corners - Bed-Corners

Set Tek-Corners - Screen-Corners

Set Inch-Corners = Inch-Vertices

END DEFALT

TABLE 2-09: Logic Description - Subroutine DEFALT

74

Logic Description - Subroutine DRAW

(Module discussed in Paragraph 2.4.2h)

BEGIN DRAW

CALL DECODE - (Interpret Next CALCOMP Sentence)

CALL CALTEK - (Apply all translations and rotations to coordinates;

Compute new values of XTEK and YTEK)

Select (MVALUE)

I - BEGIN (Temporary halt)

Set MVALUE - 0

IF (HALT) THEN

Write out blank line

CALL SCURSR - (Pause for Instructions)

CALL MOVEA (XTEK, YTEK) - (Return to Position)

Select (Character Entered)

'P' - PLOTTLNG is turned off

- CALL WRAPUP

OTHERWISE NO ACTION TAKEN

END Select

ENDIF

2 -BEGIN (Final halt)

Set 14VALUE - 0

CALL WRAPUP

END

TABLE 2-10: Logic Description - Subroutine DRAW

(Page I of 3)

75

OTHERWISE (Path for normal plotting actions)

SELECT (GVALUE)

I - BEGIN (Draw solid line or move)

IF (STEP) TEN

IF (Pen-Down) THEN CALL DRAWA (XTEK, YTEK)

ELSE CALL MOVEA (XTEK, YTEK)

END

END

4 - BEGIN (Draw dashed line or move)

IF (STEP) THEN

IF (Pen-Down) THEN CALL DASHA (XTEK, YTEK, 78)

ELSE CALL MOVEA (XTEK, YTEK)

END

2,3 - CALL CIRCLE - (Draw Circles)

5 - CALL SPLINE (1) - (Begin Spline Interpolation)

53 - CALL SPECL - (draw Special Characters)

52 - CALL STNDRAD - (draw Standard Characters)

55 - CALL OPM.SG(!) - (Write Operator Messages)

0 - (Terminate Spline Interpolation)

IF (CURVE) CALL SPLINE (0)

END

END SELECT

END (Otherwise oath)

END Select

TABLE 2-10: Logic Description - Subroutine DRAW

(page 2 of 3)

76

GVALUE 25 means reorigin to current pen location.

IF (GVALUE= 25) THEN (Perform reorigin of coordinates)

IF (Reorigin-Indicator not yet turned on) THEN

Reorigin-Indicator is turned on

Set XOFST - XBFOREE (To translate plot to correct position)

Set YOFST = YBFORE

Set X-Origin = CLTTK(3,1) - (Save old origin)

Set Y-Origin = CLTTK(3,2)

ENDIF

IF (RRIGIN) THEN - (Save Screen Cursor as origin of plot)

CALL SCURSR (IX, rY, ICHAR)

Set CAL-To-Tek(3,1) - IX

Set CAL-To-Tek(3,2) - IY

ELSE - (Reset origin to previous origin)

Set CAL-To-Tek(3,1) - OLDX

Set CAL-To-Tek(3,2) = OLDY

ENDIF

Set GVALUE, XCAL, YCAL - 0

NDIF

ENDDRAW

:.ABLE 2-1O: Logic Description - Subroutine DRAW

(Page 3 of 3)

77

Logic Description - Internal Subroutine WRAPUP

(Module discussed in Paragraph 2.4.2h)

BEGIN WRAPUP

CALL FETCH(2) - (Close Plot File)

CALL DEFALT - (Reset default values)

CALL SCURSR - (Hold plot until user finishes looking at it)

Plotting is turned off.

(Prepare for optimization by computing XRATIO and YRATIO)

Compute:

XRATIO (MAX - .MIN)/Bed-Corners (3,1))

.RATIO - (YMAX - YMIN)/243840

:F (.ATI0)YRATI0) THEN

COMPtE YMAX - YMIN - (243840 * UATIO)

ELSE

COtMPtE :0AX - :,-KIN # (Bed-Corners(3,l) * YRAT'..O)
EhND I F

Set :over .'eit hand corner of CrL-Ccrners to .XIN and YMIN

Set ipcer eflt hand corner of CAL-Corners to :IN and YMAX

Set iver r.r4ht -and zorner of CAL-Corners to IU4AX and YTAX

Set -.wer .ef t iand corner of Tek-Corners to 5 and Screen-Corners - A

iet L:)per Ieit -iand corner of Tek-Corners to 5 and 3117

Sec iprer .:4nt '-and zorner in Tek-Corners to 4090 and 3117

.'impute :ncn-.:orners - CA-Corners,5080
Write "-inal Hal:"

TABLE 2-11: Logic Description - Subroutine WRAPUP

78

Logic Description - Subroutine FETCH

(Module discussed in Paragraph 2.4.2i)

BEGIN FETCH (IFUNCT) (May be 0,1,2)

Select (IFUNCT)

0 - Extract next CALCOMP sentence

1 - Prepare for first input record

2 - Terminate file processing

Otherwise - STOP 1040 (Error Condition)

END Select

RET~tJN

END FETCH

BEGIN EXTRACT (next CALCOMP sentence; when IFLTNCT .EQ. 0)

Set Special-length to 0

Set Build-start pointer to 1

Set truncated, sentence-completed, and in-string to .FALSE.

UNTIL (Sentence-completed or Truncated)

WHILE (Record-Needed)

(This WHILE group controls the input of the physical records. The

CALCOle sentences are variable length, and may be spanned over

physical records.)

Read File INFILE (at end of file, terminate file processing) into

Record-IN

Set Translated-record to Record-in

Call TRNSLT (TRNRCD, length of TRNRCD, I)

(Translate special CALCOMP ASCII characters to EBCDIC (NASC AS/5)

or ASCII (PDP-ll)

IF ("SYNC-Code" character string is in proper location, verifying

that this is a correct CALCOMP record) THEN

Set Record-needed to .FALSE.

Set Scan-start-pointer to 1

NDIF

ENDWHILE (Record-needed)

TABLE 2-12: Logic Description - Subroutine FETCH

(Page 1 of 4)

79

IF (In-String) THEN

Set J to (remaining length of data portion of translated record,

in bytes)

Set Work-record to remaining data i, translated record.

Set TERMINATOR to position of the delemiter following the quoted

character string.

Place the untranslated data corresponding to the quoted character

string into the array Special-Text, and note the length of the

string.

Set In-string to .FALSE.

Adjust Build-Start, Scan-Start, and Special length.

IF (Scan-start is beyond the end of the record) THEN

Set Record-needed to .TRUE.

ELSE

IF (Next character to be scanned is the end-of-data marker (S))

Set Record-needed to .TRUE.

ENDIF

ELSE (In-String is .FALSE.)

(This is the path taken at the beginning of a sentence, or when a

sentence is continued over two physical records.)

Set J to (remaining length of data portion of translated recbrd,

in bytes.)

Extract last J bytes of translated record into Work-record.

(Locate the delimiter that governs the action to be taken: It is the

first of these three characters to occur in the work-record:

'' marks the end of a sentence.

marks the beginning and end of a string of characters.

'$' marks the end of the data portion of the record.

Neither '.' nor '$' is significant when enclosed within paired

exclamation marks.

The only way the exclamation mark character may be transmitted

is in a string of length I, as '::''.)

TABLE 2-12: Logic Description - Subroutine FETCH

(Page 2 of 4)

80

4

Select

WHEN (there is no break (?$')) STOP 1041

(This is a defective CALCOMP record)

WHEN ('!' occurs first)

BEGIN (Open a character string)

IF (character string is of the form ': X ', where X is the value)

THEN

Place untranslated byte corresponding to X into low-order

byte of SPCIL. (How this is done differs between NASC

and PDP; for NASC, divide by 16777216 to shift right -

3 PDP, subtract value of high-order blanks.)

Adjust length of sentence to be extracted.

ELSE

Set In-string to .TRUE.

Adjust length of sentence to be extracted.

ENDIF

END (Open a character string)

WHEN (':' occurs first)

BEGIN (Complete the sentence)

Set Sentence-completed to .TRUE.

Adjust length to be extracted.

IF (Next character to be scanned is 'S) THEN

Set Record-needed to .TRUE.

(Next request for a sentence will cause a physical record to be

brought in)

ENDIF

END (Complete the sentence)

WREN ('$' occurs first)

BEGIN (Extract partial sentence)

Adjust length to be extracted.

Set Record-needed a.TRUE.

END (Extract Partial sentence)

END Select

TABLE 2-12: Logic Description - Subroutine FETCH

(Page 3 of 4)

83.

IF (Length of completed sentence would exceed length of SNTNCE) THEN

Set Truncated = .TRUE.

Adjust length to maximum possible of additional bytes.

ENDIF

IF (Length to be extracted .GT. 0) THEN

EXTRACT appropriate number of bytes into Work-sentence

Adjust build-start

Adjust scan-start

ENDIF

IF (Truncated or sentence-completed) THEN

Compute length of sentence (LENSNT)

Place first (LENSNT) bytes of work sentence into SNTNCE

IF (Truncated)

Insert a period ('.') into last byte of SNTNCE.

ENDIF

(At this point, if Truncated or sentence-completed, then exit from

the program. If not, then control returns to the top of the loop to

complete the sentence.)

-NDUNTIL (Sentence-completed or truncated)

END EXTRACT

BEGIN PREPARE (for first input record - IFUNC .EQ. 1)

Set Record-needed to .TRUE.

Set File-open to .TRUE.

(For PDP-11 version only:

Call GETFIL to construct file name and open the input file.)

END PREPARE

BEGIN TERMINATE (file processing)

REWIND INFILE

Set FILOPN - .FALSE.

(For PDP-11 version only: CALL GETFIL to close file.)

END TERMINATE

TABLE 2-12: Logic Description - Subroutine FETCH

(Page 4 of 4)

82

Logic Description - Subroutine OPMSG

(Module discussed in Paragraph 2.4.2k)

BEGIN OPMSG

IF (FUNCT - 0) THEN

Set LINE - 720 - (Reset initial conditions)

ELSE - (Put the message on the terminal and get results)

Select (LVALUE) (Adjust character size according to length of message)

LVALUE I 0 Return

LVALUE < 70 BEGIN

Set SIZE - I

Set LINES -1

Set POINTS - 68

END

LVALUE! 77 BEGIN

Set SIZE 2

Set LINES I

Set POINTS - 83

END

LVALUE _ 117 BEGIN

Set SIZE - 3

Set LINES = .

Set POINTS 53

END

LVALUES129 BEGIN

Set SIZE = 4

Set LINES I

Set POINTS - 53

Otherwise BEGIN

Set SIZE - 4

Compute LINES + (Length (special text) +4)/113 + I

Set POINTS - 53

END

END Select

TABLE 2-13: Logic Description - Subroutine OPMSG

(Page I of 2)

83

***OPMSG attempts to keep all operator messages in the reserved space below

the graphics area on the CRT. If that space is filled up, or if the program

is in fullscreen mode, it writes operator messages from the top of the CRT

down. ***

IF (LINE :POINTS * LINES) THEN

Set LINE - 3119 - POINTS

ELSE

Set LINE - LINE - POINTS

ENDIF

CALL TWINDO (0,4095, 0, 3120) - (For Entire Tektronix Screen)

CALL DWINDO (0,4095, 0, 3120)

CALL CMRSIZ (SIZE)

Translate operator message from machine code to text to be displayed;

Place 3 asterisks in front of message.

CALL MOVEA (0, LINE) - (Move below plot)

CALL AOUTST (LVALUE + 4, Message) - (Display operator message)

LINE - LINE - POINTS * (LINES -1)

CALL SCUJRSR (ICHAR, IX, IY) (Display graphic cursor)

IF (Reorigin) THEN (Set origin to coordinates of cursor)

CAL-To-Tek (3,1) - IX

CAL-To-Tek (3,2) - IY

ENDIF

CALL MOVEA (XTEK, YTEK)

CALL TWINDO - (For Tektronix Corners)

CALL DWINDO - (For Tektronix Corners)

ENDIF

END OPMSG

TABLE 2-13: Logic Description - Subroutine OPMSG

(Page 2 of 2)

84

Logic Description - Subroutine SPECL

(Module discussed in Paragraph 2.4.21)

BEGIN SPECL K
CALL SYMHGT - (Establish orientation of special character)

IF any values out of range, THEN

RETURN

ELSE

DO: J-POINT (Special Character) TO POINT (Next Character) -1 BY 2

MOVE is turned off

Select (Entry(J))

(ENTRY(J) j -100) BEGIN

MOVE is turned on

Compute DELTAX - (ENTRY(J) +100) * HEIGHT

END

(ENTRY(J) . 100) BEGIN

MOVE is turned on

Compute DELTAX - (ENTRY(J) -100) * HEIGHT

END

Otherwise BEGIN

MOVE is turned on

Compute DELTAX MTTRY(J) * HEIGHT

END

END Select

XCAL - XCAL + (DELTAX * CSTHET) - (DELTAY * SNTHET)

YCAL - YCAL + (DELTAY * SNTHET) + (DELTAY * CSTHET)

CALL CALTEK - (Calculate XTK and YTEK from new values of YCAL and YCAL)

IF MOVE THEN

CALL MOVEA (TE1C, YTEK)

ELSE

CALL DRAWA (XTEK, YTEK)

ENDIF

ENDDO

ENDIF

END SPECL

TABLE 2-14: Logic Description - Subroutine SPECL

85

-- ,5

Logic Description - Subroutine SPLINE

(Module discussed in Paragraph 2.4.2m)
BEGIN SPLINE

IF (FUNCT - 0) - THEN - (End of spline interpolation)

CURVE is turned off

Set RUNX, RUNY - 0

Set COUNT - 0

ELSE

Increment COUNT

u7JRVE is turned on

Set RUNX(COUNT), RUNY(COUNT) to XTEK, YTEK

(coordinates of current point)

IF (COUNT - 3) THEN

CALL MOVEA (XTEK, YTEK) - (Positions the plotter beam at the

starting point for the curve to be plotted)

ENDIF

IF (COUNT - 5) THEN

Set each RUNX(J) and RUNY(J) to RLTNX.(J) and RUNY(J-1),

skipping over previously used phantom point

IF (EXACT) THEN - (Perform interpolation)

Set Xl - RUNX(2)

Set Yl - RUNY(2)

Set X2 R-IM(3)

Set Y2 - RUNY(3)

Compute DELTA - 2/Maximum of (X2-X.l) and (Y2-YI)

Select:

WHEN (First two members of RUNX, RUNY are euqal) - BEGIN

Set quadratic coefficients to last three members of RUNX and RUNY

QUADRATIC is turned on

CALL LLSQ using parameter matrix T2MAT and Quadratic Coefficients

END

WHEN (Third and fourth members of RUNX, RUNY are equal) - BEGIN

Set quadratic coefficients to first three members of RUNX and RLNY

QUADRATIC is turned on

CALL LLSQ using parameter matrix T3MAT and Quadratic Coefficients

END

TABLE 2-15: Logic Description - Subroutine SPLINE

(Page I of 2)

86

Otherwise - BEGIN - (Cubic interpolation)

Set cubic coefficients to first four members of RUNX and RLNY

CALL LLSQ using parameter matrix T4MAT and cubic coefficients

Set XCOEFF and YCOEFF to current values of Cubic Coefficients

DO: TX from -1 to 1 by DELTA - (Plot curve)

Compute XCORD and YCORD to find the end point of the small

line segment used to approximate curve

CALL DRAWA (XCORD, YCORD)

ENDDO

END

END Select

IF (Quadratic) - (Quadratic Interpolation) THEN

Set first three members of XCOEFF and YCOEFF to current values

of quadratic coefficients

DO: TX from -1 to 1 by DELTA - (Plot curve)

Compute XCORD and YCORD using TX, XCOEFF, and YCOEFF to find

the end point of the small line segment used to approximate

curve

CALL DRAW (XCORD, YCORD)

ENDDO

ENDIF

ENDIF

ENDIF

ELSE - (Approximate curve between two points with line segment)

CALL DRAW (RUNX(3), RUNY(3))

ENDIF

COUNT a 4

ENDIF

ENDIF

END SPLINE

TABLE 2-15: Logic Description - Subroutine SPLINE

(Page 2 of 2)

87

Logic Description - Subroutine STNDRD

BEGIN STNDPRD (Module discussed in Paragraph 2.4.2n)

CALL SYMHGT - (Calculates orientation of character)

IF any parameters are invalid THEN

RETURN

ELSE

DO: I - . to LVALUE - (Do until last character drawn)

Kl - Internal representation of character, converted to actual

number used as pointer

IF (K1 is between 0 and 65) THEN

DO J - PNTR (Ki) to PNTR (K1 +1) -. BY 2:

Select (ENTRY(J))

(ENTRY(J)-_ -100) BEGIN

MOVE is turned on

Compute DELTAX - (ENTRY(J) +100) * HEIGHT

END

(ENTY(J)X 100) BEGIN

MOVE is turned on

Compute DELTAX - (ENTRY(J) -100) * HEIGHT

END

Otherwise BEGIN

MOVE is turned off

Compute DELTAX - ENTRY(J) * HEIGHT

END

END Select

XCAL - XCAL + (DELTAX * CSTHET) -

(DELTAY * SNTHET)

YCAL - YCAL + (DELTAX * SNTHET) +

(DELTAY * CSTHET)

CALL CALTEK - (Convert to Tektronix coordinates)

IF (MOVE) THEN CALL MOVEA (XTEK, YTEK)

ELSE CALL DRAWA (XTEK, YTEK)

ENDIF

ENDDO

ENDDO

ENDIF

END SrRD TABLE 2-16: Logic Description - Subroutine STNDRD

88

Logic Description - Subroutine WINDOW

(Module discussed in Paragraph 2.4.2o)

BEGIN WINDOW

Default-On is turned on

DO: J-4,7 - (Since number 4-7 in ASK contain window prompts)

FLAG is turned off

UNTIL (FLAG) - (Valid value entered)

CALL ASK (J, REPLY) - (Prompt for window value)

IF REPLY is numeric THEN

VALUE (J-3) = REPLY

FLAG is turned on

ELSE

Write error message

ENDIF

ENDUNTIL

ENDDO

Set lower left hand corner in CAL-Corners l, Yl

Set upper left hand corner in CAL-Corners = X1, Y2

Set upper right hand corner in CAL-Corners X2, Y2

Set Inch-Corners - CAL-Corners

IF (Xl - X2) RETURN

RATIO = Absolute value of (Y2-Yl)/(X2-Xl)

IF (RATIO=O) RETIRN

IF (RATIO_5(3ed-Corners (3,2)/Bed-Corners (3,1))) -HEN

Set Tek-Corners (2,2), Tek-Corners (3,2) = Screen-Corners (2,2)

Compute Tek-Corners (3,1) - (Screen-Corners (2,2) - Screen-Corners (1,2)/RATIO

ELSE

Set Tek-Corners (3,1) - Screen-Corners (3,1)

Compute Tek-Corners (2,2) and Tek-Corners (3,2)

Screen-Corners (1,2) + (RATIO * Screen-Corners (3,1))

ENDIF

TABLE 2-17: Logic Description - Subroutine WrJINOW

(Page 1 of 2)

89

Set Tak-Corners (1,i), Tek-Corners (2,1) - 0

Set Tek-Corners (1,2) = Screen-Corners (1,2)

Set PSI = -PSI

Set SINPSI -SINPSI

END WINDOW

TABLE 2-17: Logic Description - Subroutine WINDOW

(Page 1 of 2)

90

AD-AI02 493 PRC DATA SERVICES CO RESTON VA FIG 9/2
CALCOMP PREVIEW SYSTEM. PROGRAM MAINTENANCE MANUAL (U)

UNCLASSIFIED APfl CA/flF-Al Innp&A IO-7C00

SECTION 3. ENVIRONMENT

3.1 Equipment Environment. On the NASC AS/5-3, the CALCOMP Preview

System requires the following to run: a CPU with 192K of storage,

a TMCrRONIX 4014-1 terminal or equivalent for input and output, and a

CALCOMP file on disk. CALCOMP files on tape can be copied to disk

through use of the utility IEBGENER. See Reference 1.2e for details.

A user merely wishing a dump of the file can run the job in batch and

can use the line printer for output.

On the PDP-II/70, the CALCOMP Preview System needs the following to run:

a CPU, a TEKIRONIX 4014-1 terminal for input and output, and a CALCOMP

file on either tape or disk.

3.2 Support Software. On the NASC AS/5-3, the programs were compiled

using the FORTRAN H Extended Compiler - Optimization Level 1. The

string handling routines were developed using IBM 360 ALC. On the

PDP-1l/70, the programs were compiled using FORTRAN 4 PLUS V03.0.

91

97.

SECTION 4. PROGRAM MAINTENACE PROCEDURES

4.1 Retrieval Procedures. The source code of the program described in
Sections 2.4.1 - 2.4.4 is stored in R831.LIBRARY under the member name

CLTOTK. It can be retrieved through the LBGET command. For example:

LBGET CLTOTK DSSORCE('R831.LIBRARY') CNTL

The load module is stored in SYS9.DCAFORT.LINKLIB under the number name

TEEKTRONX. During maintenance and modification, the source code and load

module should be left unchanged. Instead, changes should be made to

copies of the subroutines. If extensive changes are to be made, the

recommendation is to divide the program source into separate modules,

recompile each module with the option of saving the object code, and link

edit. See Figure 4-01 for sample JCL for assembling a string handling

routine. See Figure 4-02 for sample JCL for compilation and linkage edit.

The PDP-11 version of the CALCO1P Preview program can be retrieved in one

of two ways. One way, the user LOGIN's to the PDP-1 and copies the program

from UIC 50,553 to his own U 1C. He types in:

COPY [50,55]CLTOTK(.FTN CLTOTK.FTN

The user now has a copy of CLTOTK.FTN under his UIC.

.Alternatively, the user can do the following. The user obtains a tape

from the room containing the PDP-11/70 and gives it to the operators of the

NASC who give out a serial number for use on the NASC. Then the user logs on

to the NASC, performs a LBGET of CLTUDP from R831.LIBRARY, places CLTK2DP

on the tape through the IT? command, transports the tape back to the PDP

room, logs in to the PDP-11/70, and performs a TPI. Below follows the

sequence of events. In this example, the user retrieves tape #90017 from

the PDP-11 room and the NASC operators tell him to use U90344 as the

serial number.

92

//*iO33ASM JC6 1010 sR3 0 0 , N9AFEZrC
i4C T IFY=4 9023

/*THIS 1 S "0932*CNTL(%SM)

/ THIS JCL WILL ASSE111LE ; SC ~rCAA AN C OLACO- THEf CqJEI:
//MCOULE IN4 A -,CS F R LATER w3E*

//ASSE~4aLE EXEC IkSFI
//SYSGC Di 0 OSN =-;C 3 SIC PE CJ (S LST MC)
//SYS IN 0 0 ISP=3-r, *ONM, 2,S(7E 9 ToS

FIGURE 4-01: Sample JCL for Assembling String Handling Routine

93

//MS033CPI JC8 1020JPC102,0)*A4E---~
// NQT1FY=M93:!sSGCL-. S=O
//CC14P EXEC F:"RTXCLP

// Ar%4.GFT=t' 'F.NCLI3T,.:PT(1I9.A~sL:NECOUNTr(75)',

//FCPT*SYSLIN CO
//FC:.T&SYSIN DO ~i

// K7'-* YL'. ' 0D~ t 'AI qO-43, sc :0 0J(Y':- N) .0 S7-SHP
//LK=-O aSYSL 3 00 SsVtF 3-L:3. DI'SF=SHi

0) ') c!~ =SYS, a T -TP "x,-! s; 4Hr

//LKEO*LIE Or, N~CS2.~,iP~

//LK-=CsSYSIN 00
r, CLJOE L2(St SK)

:NC L ..D LIe(scx)

!'JCLUIPt L'a(CAL -K)

I NC LUCE LI e(:)r "W)

I NLJOE LI3(FET -)
t*CLJO= L!(H =-L Z)
tNCL LL~ L2,'(LLSO)
'4CL JDE L ;E!(TP'MSG)
IC L %.; L12(SSc-CL)

I IC LUDE LI -(SMLI "E)
INCLJOE L:P(SY4HC-T)
1 *NC L ..CE LI 2 STNI Y)
INCLJOE L 13(T- -1"1S)
SNC L LDE L 1 m

I .CLJOFl LI 9(5 ST'

I:iCLUDE LI:3(38STcn)

P CLJDE L 1 9(s~ T 40

'CLJOE ("Y

FIGURE 4-02: Sample JC1L to Compile and Link- Edit

a Module of che CALCOP Preview Program

94

NASC

1. LOGON to NASC computer.

2. Do a LBGET by typing in:

LBG CLTKPDP DS('R831.LIBRARY') FORT RON

3. The result is a data set called

Userid.CLTKPDP.FORT. Now, perform an ITP, by typing in:

ITP CLTKPDP.FORT your name VOL(U90344) TIME(20)

When the job submitted by the ITP is finished the user retrieves his

tape and transports it to the PDP room. He types in the following

commands on the PDP-11/70.

PDP-11

1. LOGIN to the system.

2. Mounts tape by typing in:

ALLOC MMO:

MOUNT/FOREIGN MIMO: 90017

3. Performs a TPI by typing in:

MCR TPI CLTOTK.FTN

This results in creating a data set in your UIC called CLTOTK.FTN..

4.2 Extensions to a Different .Machine. If the CALCOMP Preview System

is to be implemented on a different machine, such as Honeywell, CDC, or

Burroughs, several changes to the source code may be required to allow

for differences in machine operation. These changes will probably involve

the areas described below:

a. Size of the CALCOMP records - On the IBM and the PDP-l, CALCOMP

records are 360 characters. On another machine, the record

size may well be different from either the IBM or the PDP-ll.

Affected routine: FETCH.

b. Different internal representation - Conversion to another

machine will require changes to any source code that converts

internal machine representation of a character to a number.

Affected routines: STNDRD, FETCH, TRNSLT.

95

c. Baud rate - The baud rate of the Tektronix terminal connected

to a different computer may be different than either the PDP-11

or the IBM. (Thus, parameters in the calls to INITT and TERM

may need to be changed.) Affected routine: BLANKR.

d. Integer Representation - On the IBM, the default integer is a

full word integer. On the PDP-l1, the default integer is a

half word integer. On both machines, the 0NT function converts

a real number to a default integer. Because of overflow, real

numbers must be converted to full word integers. Hence, the

PDP-11 and IBM required different functions for real to full

word integer conversion. When converting to another machine,

be sure real to integer conversion results in a full word

integer. Affected routines: CALTEK, STNDRD, SPECL.

e. String Manipulations - The routines to manipulate strings

are machine dependent. On the IBM, they are written in assembly

language. On the PDP-tl, they are written in PDP-11 Fortran 4

Plus. These routines will need to be rewritten for a different

machine. Affected routines: GSTRE, GSTRI, CONCAT, INDEX, SBSTRI,

SBSTRO, TRNSLT, VERIFY.

f. File Name Specification - On the PDP-11, the input file name

followed a strict convention; hence the need for subroutine GETFIL

called by subroutine FETCH. If conversion to another machine

requires an input file of a certain naming convention, GETFIL

needs to be changed. Otherwise, GETFIL may not be needed.

Affected routines: FETCH, GETFIL.

g. Messages - Instructions on how to use certain commands such as

"DUMP" and "PLOT" may need to be changed because the naming

conventions for files. Affected routine: HELP

96

h. Exclamation Point - On some machines, such as the IBM, the

exclamation point which delimits strings is unprintable and

may not be interpreted correctly when transferring to another

machine. Thus, the exclamation point needs to be explicitly

specified. Affected routines: DECODE, FETCH.

The IBM version of the CALCOMP Preview System, as implemented on the

NASC AS/5-3 at DCEC, can be run via TSO with no-overlaying. Due to the

size of the program, the PDP-11 version needed an overlay structure to

permit successful linkage edit. See Figure 4-03 for the listing of the

overlay structure on the PDP-1I/70. A similar overlay structure may

need to be built when trying to run on another machine. [I

4.3 Additional Commands. If a new command is to be added to the CALCOMP

Preview System, changes will need to be made to modules HELP and MAIN

as well as writing any software pertinent to the new command. In HELP,

the prompt telling the user all available commands will need to be

changed. Also, a message telling how to use the new command will need to

be added to HELP. Another statement number will be added to the computed

GO TO to branch to the new message.

In module MAIN, IF statements will be needed to implement the new command.

One IF statement is needed to implement the actual command while another

IF statement is needed for the call to HELP with the message number to be

one greater than the current highest message number.

A new key word is added to the DATA statements to correspond to the

new command. Currently, variables compared to the key words allow for

one, three, four, five, six, seven, eight, and ten character responses. V - "

These variables are named REPLY2, REPLY4, REPLY6, REPLY7, REFLY8, REPLY9,

and REULll, respectively, to allow for the actual length of the response

followed by one space. Thus a three character response such as "BOX"

97

6-I

R~OOT CLROOT-'* (KALNKR, BOX, HELP, W NDOtW-ASK, RS'
1OLPOO-T: *FCTR MIr4-DEFALT-FETCH-GETFIL-LSQ-TRANS-OPMSG-BLOCK-STPPTi-

iRTRTN*: .FCTR GSTRL-GSTRE-VERIFY?-CONCAT-SBSTRI-SBSTRO-I1DEX-T~NSTT
DRAWSG: .FCTR DRAtJ-DECODE-CFALTEK-SYMHGT-: (DRSUB)
DP.SUB0 .FCTR WRAPUP,CIRCLE,STNDRD,SPECL,SPLINE

END

FIGURE 4-0C3: Listing of overlay Structure on PDP-11/70

(C60, 20]C'LTOTYK. ODL)

98

is compared to REPLY4, which equals "BOX". Currently, the REPLY variables

provide only for responses currently in the program. Hence, no REPLY3,

REPLY5, or REPLIO. If the new command is nine characters in length,

a variable named REPL10 should be declared for use with the compares

used to interpret user responses. Likewise, if a new command is two

characters in length, a variable named REPLY3 should be added.

99

APPENDIX A

Mathematical Background

(Note: This appendix is intended for a reader who has a knowledge of

mathematics through elementary linear algebra).

The purpose of this appendix is to present the mathematical background

for the computations which the CALCO0P Preview System performs in

simulating the CALCOMP plotter. Anyone who modifies the methods used

to compute plotting coordinates must have a good understanding of this

Appendix.

I. Coordinate Systems used:

a. CALCOMP plotter: the plotter draws on a rectangular bed

which is 48 inches high by 82 inches wide. The origin of

coordinates is at the lower left hand corner, and the unit of

measurement is 1/5080 of an inch. Normally, therefore, the

largest Y value is 48 X 5080 - 243840, and the largest X

value is 82 X 5080 = 416560. The command system of the plotter

provides for a mechanical or mathematical relocation of the

origin to any arbitrary position, however.

b. TEKTRONIX graphic terminal, model 4014-1: The origin of

coordinates is at the lower left hand corner of the plot area.

The plottable points are at integer coordinates. The largest

Y value is 3120, and the largest X value is 4095.

II. Coordinate Transformation Technique used.

If the coordinates of the CALCOMP system are considered to be the

C-plane and those of the Tektronix are considered to be the T-plane,

the basic problem facing the program is to define, and then apply,

a rigid transformation from the C-plane into the T-plane that will

possess desired characteristics, normally expressed in terms of

scaling, offset, and rotation, or something equivalent.

The rigid transformation may be expressed as a matrix A with the

following properties:
')/

If-? (xcyc) is a vector of coordinates in the C-plane,

and T (xt,yt is the corresponding vector of coordinates

in the T-plane, then the transformation is rigid if

A YC , xt and tho submatrix
yt

Al (a,, a 12\

a2 1 a22)

is a multiple of an arthogonal matrix (and hence nonsingular).

Clearly A must be a 2 X 3 matrix; the vector

o- * a13 is the point to which the origin of

a23)

coordinates in the C-plane is mapped.

Alternatively, one could write the transformation as

T AC + a and then solve for

C, given T, by

C = A-(T o)

The program governs the transformation by establishing three

pairs of noncollinear points which correspond to each other

in the C-plane and the T-plane, and using the relationship to

determine the matrix A, as follows.

If and? (j - 1,2.3)

are corresponding points, then A must satisfy

A-02

Within the program, the subroutine LLSQ is used to solve this

matrix equation. The matrix A is stored in the array CLTK

(3,2) in labeled COMMON.

The three non-collinear points are the lower left, upper left,

and upper right corners of the area to be plotted. Their

coordinates are stored in the arrays CLCRNR (3,2) ('CALCOMP-

Corners') and TKCRNR (3,Z) ('TUETRONX-Corners') respectively,

in labeled COMMON. Assignment of these values is done

by various subroutines in the program, depending on the function

that the user selects.

III. Spline interpolation.

The CALCOMP system performs spline interpolation by using four

points, say l, X2, X3, and X4. Given the four points, the system

draws a smooth curve from X2 to X3, using X1 and X4 to govern the

directions at the beginning and end of the curve. After this,

the old Xl is discarded, X2 becomes .1l, X3 becomes X2, X4 becomes

X3. If a new X4 is supplied, the process is repeated.

To start and end the plot of a curve, it is necessary to supply
"phantom points" which are never plotted, but which serve as

the first X and the last X4. If the first X is not distinct

from the first X2, or the last X4 is the same as the last X3,

the system still works, however.

This program uses a pair of cubic equations in an auxiliary

variable, or parameter, to approximate this function. The

cooefficients are determined in a manner similar to that used for

coordinate transformation.

A-03

The auxiliary variable t is chosen so that the points -map thus:

T X

-3 Xl

-1 X2

1 X3

3 X4

Then the coordinates are computed by
33

x - at3+ a2t-2 + alt + ao

y - b3t 3 + b2t 2 +blt + bo

with t ranging from -1 to I with an increment just large enough to

make a change of one unit on the CRT face. The coefficient vectors
/

A (a3 b2 al ao)

-I?' (b3 b2 bl bo)" are determined by

27 9 ~-3 1 Y

1 -1 1.2 Y2

I 1 i Y3
S27 9 3 1 X4 Y4

Again, the subroutine LLSQ is used to solve this system and determine

the coefficients.

If either end point is not distinct, the degree of the parameter

?olynomial Is reduced to two, and appropriate changes are made in the

matrices.

A-04

APPENDIX B

This appendix contains a cross reference table between the variables

contained in the common block COMBLK and the programs comprising the

CALCOMP Preview System. Any entry in the table containing a '""

means that the variable is used within a program but not changed. Any

entry containing a "C" means the variable is changed.

kF

Ad

CLCRNR C C C C C C

CHCRNR U C C C C

Cc ~ C C C U C

BDCRNR U U C u
CI{URTC U C

PHI U C

TANPHI U C

COSPHI U

SECMPHI U C

CSPSI U CCC

COSPSI U CC

SIPSI U C CC

PSIX

s SINPSX c u

COSPSX C U

AVALUE c C

3VALUE C C

EVALUE C U U

FVALUE C U U

IVALUE U C

JVALUE U C

NVALUE C U U

?VALUE U UC C

QVALUE U U C C

RVALUE U U C C

SVALUE U U C C

UVALUE U U C C

VVALUE U U C C

B-02

SNI4C 3c c Q t
SPLTXI cCC
LETTER u
GVALUE u u c c c
LVALUE cU

MVA.LUE c c i
TVALUE C
HEIGHT C C
INFILE uC
LENSNT u
NSNTNC C
SPCIL uC

SFLLEN CU
XAX c C C
XG1IN c C U
YMAX c c C
YMIN C C u
XOFST C C CC
YOFST c c CC
XORG u C
YORG u C
XCAL u cc cC C
YCAL u cc CC C
XTEI c c u u

YTKc C u uuuuu
XBFORE CU uU

YBFORE c u u
OLDX c c u
OLDY c c u
PREVX c c

PREVY c

B-O03

WA -4z

z 0 * 0Z C Q _-o =
4 w - Lj W & Z -J z 2 f

~ 0 ~.~0. A. E- >4-

CURVE U C

DFLTON U C C
EXACT U C U

FILOPN C U C

FRAME U C

HALT U

PNDOWN U C U

PLOTNG C C C C C

RRIGL-N U C

STEP C C C U C

ENDFIL C C

RRGIND C U C

* In subroutine FETCH, the bit FILOPN is used only in the NASC version.

On the PDP-1I/70, FETCH calls GETFIL instead.

Note: LLSQ does not access COMMON, but passes all values as arguments.

B-04

APPENDIX C

Differences Between CALCOMP Routines on IBM and on PDP-11

1. String manipulation routines in IBM are written in assembly language.

String manipulation routines on the PDP-1l are written in PDP Fortran 4

Affected routines:

GSTRL SBSTRI

GSTRE SBSTRO

INDEX CONCAT

VERIFY TRNSLT

2. In the subroutine BLANKR, the subroutines INITT and TERM require

different parameters due to differences in baud rate and terminal

characteristics.

a) IBM calls to INITT and TERM are:

CALL INITT (180)

CALL TERM (2,4096)

b) PDP-11 calls to INITT and TERM are:

CALL INITT (1100)

CALL TERM (3,4096)

3. In the subroutine CALTEK, different built-in functions are used

to convert a real number into an integer. The IBM version uses

the INT function. The PDP-11 version uses the JINT function.

4. In the subroutine DECODE, the ASCII character (!) is not

available on the EBLMIC character set used in the NASC system. The

corresponding character used is the right bracket (Q). The
exclamation point () is used on the PDP-11.

5. In the subroutine FETCH, the variable SPCIL, which contains a pointer

to a designated special character is computed differently due to

differences in internal representation on the IBM and PDP-ll. On

the IBM, SPCIL is the quotient of ISPCL (the machine representation

of the special character) and the constant 16777216. On the PDP-1l,

SPCIL is equal to the difference between ISPCL and the constant

538976256.

Due to the naming convention of PDP-1I Fortran files, the PDP-11

version of FETCH calls a subroutine GETFIL with a parameter 0 or 1,

while the IBM version merely sets a bit FILOPN true or false.

The exclamation point character is not available on the NASC

system, and is handled as described in para 4, above.

6. In the subroutine SPECL, different built-in functions are used to

convert a real number into an integer. The IBM version uses the INT

function. The PDP-11 version uses the JINT function.

7. In the subroutine STNDRD:

a) Due to different internal representations in the IBM and

PDP-1l, the variable PTR, which is used as a pointer, is

calculated differently. In the IBM, PTR is the quotient of

KlUP(l) divided by 256. In the PDP-ll, PTR is the

difference between KlUP(l) and 8192.

b) Different built-in functions are used to convert a real

number into an integer. The IBM version uses the INT function.

The PDP-11 version uses the JINT function.

8. In the subroutine MELP, the messages for the PLOT and DUMP commands

are different in accordance with differences between the PDP-11 and IBM.

9. On the NASC, DRAW and WRAPUP are compiled simultaneously. Oln the

PDP-lI, they are stored in separate object modules.

C-02

. k

APPENDIX D

Structure of the CALCOMP Plot File

The structure of the CALCOMP plot file, the primary input to the CPS, is

governed by the design of the CALCOMP plotter, as implemented by the

software distributed by the CALCOMP manufacturer. This structure, in

turn, governed the design of subroutine FETCH, which performs the input

function for the program.

The logical structure of the files is the same in any implementation of

the CALCOle plotter; however, the physical structure of the files differs

greatly among the various computers that support it, such as the PDP-II,

NASC AS-5/3, or IBM 370 systems. This appendix describes only the logical

structure of the records in the files. Any implementation of this

program must rely on the operating system for the physical input function.

The file is composed of a sequence of sentences, which provide commands

and data. The sentence, in turn, is composed of a sequence of words,

which carry the individual data items. Each word begins with a letter,

which may be followed either by numeric data or by a character string.

A character string is a non-null string of characters preceded and

followed by an exclamation point. The exclamation point character may

be transmitted only as a single character, in a group of three exclamation

points. In that case, the first and third exclamation points are used

as delimiters, and the second one is the data. Any characters contained

in a character string are treated as data, and lose any significance

they might have had otherwise. The sentence is ended by a period not

contained in a character string.

The records in the file start with a four-byte constant string called

a sync code, which serves to mark the beginning of the words in the

record. The words in the record are contained between the sync code

and a dollar sign which is outside a character string. The delimiting

dollar sign, and any data that follows it, is not otherwise significant.

S.too

Sentences may be continued over more than one logical record, but they are

always broken between words, so that logical records contain complete

words, but not necessarily complete sentences.

The data is transmitted in modified ASCII8, in which the space character is

binary zero, and all other characters follow in the ASCII character

collating sequence, up to the underscore character, which has binary

value 63.

The following are examples of CALCONP sentences, and their interpretation.

A complete description is given in reference 1.2b.

a. Nl7GID2X-66040Y86360.

The parts are:

N17 - identifies and numbers the sentence.

G1 - move or draw to the following coordinates.

D2 - raise the pen - i.e. move, do not draw.

X-66040 - X coordinate is minus 66040 "CALCOMP Units", which

normally are scaled 5080 to one inch.

Y86360 - Y coordinate is plus 86360 CALCOMP units.

- marks the end of the sentence.

b. N3TlG25XYMl.

The parts are:

N3 - identifies and numbers the sentence.

T! - search address for operator use.

G25 - reorigin the coordinate system to the present location

of the pen.

X - new X coordinate is 0.

Y - new Y coordinate is 0.

Ml - perform a temporary halt.

- marks the end of the sentence.

D-02

.. ". . .. " ...- ? ' -- " '' " ' . . ." l 4 2 l - I

c. N145G52!HAPPY FACE.

The parts are:

N145 - identifies and numbers the sentence.

G52 - command to print a string of characters.

!HAPPY FACE! - The string of characters to be printed.

The exclamation points are delimiters.

- marks the end of the sentence.

Figure D-01 contains a listing, in EBCDIC characters, of a plot file

used as test and demonstration data, which was produced by the TDMIP

subroutine provided by CALCOMP and described in Reference 1.2b. The

listing, as produced by TDUMP, differs slightly from the true content of

the file, as follows:

The sync code, which is the first four characters of each logical

record, is represented as '????'. The.ASCII value is '?99?'.

The delimiters on quoted strings are shown as single quote marks.

They are, in fact, exclamation points, ASCII8 character 33 (Hex 21).

This character is represented as '2' on one of the EBCDIC print sets

used on the HSF NASC AS/5-3 computers, and is unprintable on the

other.

Note that when the data in a record is terminated by a data delimiter

(M), the characters following the delimiter are left unchanged, and

are not significant to the program.

The length of the logical record is determined by parameters set within

the CALCOMP subroutines used at the installation. At the HSF, the

subroutine that governs the length is called BUFF; the governing

parameter is JMAX, which sets the record at 90 words, or 360 characters.

Of this, four are used for the sync code, and 356 remain for data.

D-03

.. vL L!

m9 e4N (%I z"J N 0

x 1,4 coo WSO. x d q

.o tr.s a co 0'~ , 0C'ou

fu 10. ala 10 1100o~ C

a* -$~ I -

00 .me IGC t- N (

N'Z c I'm Z4E o 00,0'.

IEOO ..JO 10 ('10 co C oM

00e ll .InO v Xo00; (.0

~~~ *O NC- - .
*z rI. 0 r a m *mf 0

0a 0E' kr,. M 00 Nx flo.

1n 0.1.
Xi to 1=J (('40 x c0e N

0 Il. ) 0-

0.4 It 9 114 W ~ f.- = U ;

-l 0Z W r ZI'. 'eZ X04 0 -"
00 0 .4 0(J W4 vo; ONO 4.jU

* ( -O u oZ C ,0 (,4 a
* ., 0.0 £m * Ze 0C NO

40'2 00ff 0m ~ -'

"-4~~ .mco ...
0  

*u '. 3f. zrx-0.ex
40 0 X a 41 4f 0 0. 0

- ~ C, :z *-o o o e,'
.* . * .~0 0cJ. 0N ~ '

~~ . .. i,* JA! x 1 1

J *r. '.MlL ;C (x z( 72

z 4 -
9

-i **( P,'

P- 0 *O ((..q(x rC0 z

-n 9.1 w~' U') cu a l 0 0 70
-~~~~ w 00 *m"j'1. ..

*z .1 ,!

419 00 '.3 ~ -1 *II~ ).4 r
Q' 0Nz v I. * q le-.(

* ~ ~ ~ ~ ~ ~ ~ C ow~C~ * *~(( *. * . (

-~~~ d.z . N EO ".0



I)AI


